TY - JOUR T1 - What are the Winning Conditions in Sports Competition with a Predetermined Cumulative Point System AU - Park, J.H. AU - Yun, H.J. AU - Choi, C.H. AU - Pardalos, P.M. JO - Journal of Engineering and Applied Sciences VL - 14 IS - 17 SP - 6519 EP - 6524 PY - 2019 DA - 2001/08/19 SN - 1816-949x DO - jeasci.2019.6519.6524 UR - https://makhillpublications.co/view-article.php?doi=jeasci.2019.6519.6524 KW - Predetermined cumulative point system KW -badminton KW -table tennis KW -consecutive winning points KW -consecutive losing points KW -Monte-Carlo simulation AB - The objective of this study is to examine whether the empirical distributions of consecutive winning and losing points obtained in real games of badminton and table tennis in which the winner is determined by a predetermined cumulative point system are the same as the naturally occurring probability distributions of consecutive winning and losing points generated in simulations. In addition, this study suggests conditions in which winning is likely based on these consecutive winning and losing points. Pseudo-data for the comparison were generated using a Monte-Carlo simulation. The frequencies of consecutive winning and losing points for both real and simulated data were calculated and a χ2 test was performed to test the homogeneity of the two groups of data. The findings showed that the empirical distributions of consecutive winning and losing points in the real games of badminton and table tennis were not different from the probability distributions of the simulated pseudo data (significance level α = 0.05). ER -