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Abstract: A new approach to estimating a key component of popular crop protection protocols 1s developed.

The approach, featuring sequential sampling based on an evolutionary sample design, 1s presented and a

numerical example is given to illustrate its use. Practical applicability in a research environment is considered.

Economic implications are indicated along with directions for further research.
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INTRODUCTION

The most prominent protocol of Integrated Pest
Management (TPM) decision making
parameter known as the economic or action threshold
(Davis and Tisdell, 2002). The economic threshold was
designed to prevent pesticide treatments which are not
economical and thereby achieve the dual purpose of
reducing pesticide use and farmers' costs. Economic
thresholds have been developed for many crop-pest
systems and are frequently part of crop protection
protocols promoted to farmers by agricultural information
agencies. For example, survey data reveal the success of
these efforts in terms of their impact on crop protection in
the United States (11, 5. Department of Agriculture, 1994).

In view of the popularity of the economic threshold
and the existence of strategies with similar character in
other areas of management, the purpose of this study is
to provide a new method and data collection procedure
for estimating the economic threshold. The methed offers
potentially 2 advantages over traditional approaches:

involves the

*  The economic threshold 1s estimated directly whle
unnecessary estimation of other parameters mn the
agro-ecosystem is avoided.

¢ Specific assumptions concerning parametric forms
for dosage/response and damage relationships as
typically specified for economic threshold estimation
are not required.

In particular, avoidance of the need to estimate
dosage/response and damage relationships 1s potentially
umnportant. These relationships have often presented

difficulties for applications and have proved both
troublesome and conten-tious mn some cases (Pannell,
1990; Fox and Weersink, 1995). Even estimation of what
are believed to be theoreti-cally sound damage
relationships alone has caused problems. For example,
Cousens (1985) important model of crop-weed competition
often exhibits extraordinary sensitivity to experimental
design. Fortunately, the character of the economic
threshold facilitates direct estimation without resorting to
specific parametric forms for dosage/response and
damage relationships if data collection 1s directed toward
this purpose.

THE ECONOMIC THRESHOLD

The economic threshold refers to a pest population
level related to a fixed pesticide treatment rate. The farm-
level decision rule associated with the economic threshold
is to apply a predetermined amount of pesticide, D, if
monitoring reveals a pest population that exceeds a
threshold level, T. Hence, the economic threshold is a rule
of thumb with an if-then-else character; viz., if the pest
population exceeds T, then treat with amount, D; else, do
not treat. From a manager's viewpoint, D and T are easily
understood parameters which guide pesticide treatment
decisions.

For example, the predetermined amount of pesticide,
D, 1s frequently a pesticide label dosage rate while the
threshold pest population level, T, is often obtained from
publications of agricultural information agencies. As with
other rules of thumb, the economic threshold is intended
to facilitate rational management while recogmzing that
practi-cal decision making must often be done without the
luxury of lead time or extensive analysis.
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Table1:  States, actions and conditional expected payoffs defined by the
economic threshold
State e<T =T
. T b
Probablllty j g (E)d e j g (E)d e
a T
Action
T b
j w(0,5)gl=)d = J- v(0,e)g(e)de
x=0 a T
T b
J. glede J. gl=)de
a T
T b
j viD,g)gle)d e J. v(D,e)g(e)de
x=D a T
T b
j glE)de J. glexde
a T
From an analytical perspective, the decision

parameter, T, associated with the economic threshold
corresponds to a partitioning of a state space nto a two
state-two action game agamst nature 1 which nature
pursues a mixed strategy (Table 1). Under the economic
threshold concept, managers implement an if-then-else
strategy under perfect information. In the table, the state
space is depicted by population values,e, while the action
space is depicted by pesticide treatment rates, x. Payoffs,
v(x, €), are depicted as depending on action-state pairs
while nature's mixed strategy is characterized by g(e).
Payoffs corresponding to the action-state pairs in the
game are expected payoffs conditional on the partition
defimng the game. For example, using conditional
probability formulas, the first payoff element shown in the
Table 1,

T
J- v(0,e)gl(e)d

J.Tg(e)de

1s the expected payoff given that the pest population is
below the threshold and treatment decisions Yare guided
by the threshold. The parameter comprising the economic
threshold defines the optimal partition; i.e., the game
against nature which expected to be
advantageous for managers to play.

Given enough information, the decision parameter, T,
threshold can be
determined analytically. Assume a payoff function v(x, €)
and a probability density function for pest level, g(€).
Given the predetermined treatment rate, D, the followimng
optimization model determines the decision parameter, T,
i order to maximize the value of the game given nature's
mixed strategy and the parametric form of a manager's
strategy:

i most

associated with the economic
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Maximize E[v(D,T)] =
{T}

T b (1
J- v(0,e)g(e)d e+j v(D,e)gle)de
a T
Assuming differentiability of E[v(D, T)], the
necessary condition for solution of (1) is
ENVDD 0 1)-vD.Thgm=0 @
aT
Given (2), a sufficient condition for solution of (1) is
OE[v(D, T
#:(V(O,T)—V(D,T))g'@) 3)

+(av(o,T) ~(0,T)
oT ar

Note that from (2) and (3), specific expressions for v(x,
€) and g(e) can vield a specific value for the solution to
(1).

Note also that (1) corresponds to the value of the
game associated with Table 1 under perfect information.
A traditional approach to determining the solution to (1)
is to use experimental observations on treatment and pest
population to estimate parametric forms for v(x, €) and
g(e). Often, geometric and/or arithmetic series dominate

Jg(T)<0

experimental design and typically, questions relying on
analysis of variance for answers are perhaps more
appropriately pursued with the resulting data than is
estimation of the economic threshold. The parametric form
of v(x,€) typically involves relationships commonly
referred to as dosage/response and damage relationships.
Solving (1) with the specific parametric expressions
provides the economic threshold decision parameter, T.
An empirical example of this approach, including specific
parametric forms for v(x,¢€) and g(e), is contained in Hall
(1988). A second parametric approach, apparently rarely
used, to finding the solution to (1) can be based on
Bayesian methods and sequential sampling.

While either of the 2 traditional approaches to
estimating the economic threshold can provide valid
results, both involve estimation of parameters not
typically used by meanagers such as those contamned in
dosage/response and damage relationships and also
require specific parametric forms
implemented. The latter in particular invites specification
error to adversely influence findings and tends to limit
investigations to functional specifica-tions known to be
tractable. The study begins to detail a new approach to
estimating the decision parameter, T, directly along with

i1 order to be
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a sample design based on the outcome of an evolutionary
algorithm to mplement the approach. The method 1s
based on the optimality conditions in (2) and (3), some
general properties of v(x,€) and sequential sampling based
on processing of logical (true/false) operations by an
evolutionary algorithm.

LOGICAL PAYOFF RESTRICTIONS

This study presents the foundation for a new method
of estimating the key parameter in many crop protection
protocols known as the economic threshold. The method
involves sequential sampling based on processing of
logical operations by an evolutionary algorithm to identify
the economic threshold decision parameter directly wiule
avolding estimation of any underlying structural
parameters associated with the agro-ecosystem. It should
be emphasized, that the method 1s mtended for use m a
research environment where experimentation to generate
and collect data for estimation is possible.

The following assumptions are made concerning
nature's mixed strategy and the payoff function depicted
in Table 1.

First, it is assumed that g(T) = 0. This assumption
means that nature's mixed strategy will not mvolve a
vamshing probability at the optimal partition of the state
space. This assumption does not appear to be restrictive.
In fact, there does not seem to be any reason to expect
that a population level, almost surely never observed, will
play a significant role in a management protocol. Second,
it is assumed that the payoff function satisfies the single
crossing property in its arguments (Milgrom and
Shamnon, 1994). This assumption requires that for x” > x”
and €"> €”, v(x', €">v(x", €") = v(x', € J>v(x", € ) using
the term "better" to refer to a larger payoff, satisfaction of
the single crossing property means that if a larger
pesticide treatment rate 18 better than a smaller one at a
particular population level, then it will also be better than
the smaller treatment rate at an even larger population
level. This assumption seems plausible for most situations
and 1t 18 noteworthy that payoff functions mn the literature,
mcluding studies by Hall (1988) and Liu et af. (1999), have
invelved payoffs satisfying the single crossing property.
These assumptions imply some important restrictions
onthe payoff function that can be used in identifying
the solution to (1) with an appropriate sample design. As
shown in Appendix A, these assumptions imply that
v (D,T) > v(0, €) for alle > Tand v(D, T) <v(0, €) for
alle <T.

To summarize, the optimality
conjunction with the assumptions about v(x,€) imply the
following restrictions on the solution to (1):

conditions in
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v(D, T)=v(0, T) (4
viD, T)>v(0, €) for all e =T (5
vi(D, T) <v(0, €) for all € <T (6)

The logical payoff restrictions (4) - (6) provide a basis
for discovering the solution to (1). A recently developed
advance in evolutionary computational methods (Karavas
and Moffitt, 2004) facilitates parsimonious sequential
sampling and rapid discovery of the economic threshold
using (4)~(6). Performance 1s demonstrated in a numeri-cal
example presented in a later study.

The logical payoff restrictions (4)-(6) provide a basis
for discovering the solution to (1). A recently developed
advance m evolutionary computational methods (Karavas
and Moffitt, 2004) facilitates parsimonious sequential
sampling and rapid discovery of the economic threshold
using (4)-(6). Performance is demonstrated in a numeri-cal
example presented in this study.

Appendix A: This Appendix provides a proof that
conditions (2), (3), satisfaction of the single crossing
property by the payoff function and monotomeity of the
payoff function in e imply that v(D, T) > v(0, € ) for all € >
T and v(D, T) < v(0, €) for all € < T. From (2) and (3), it 1s
apparent that

MO,T) _avio,T)
oT oT

T at the optimal strategy. This inequality implies that v(D,
T) 1s steeper m a neighborhood of T than 1s v(0, T);
hence, v(D, T+A ) = v(0, T+A ) and v(D, T-A) < v(0,T-A)
for small positive D . By the single crossing property, v(D,
T+D )= v(0, T+A ) = v(D,e ) > v(0,e ) forall € > T+A . By
monotomieity, v(D, T+A ) > v(0,e ) for all € » T+A.
Allowing A to approach zero gives the desired result.
Similar reasoning shows the second part.

PROCESSING OF LOGICAL OPERATIONS

A general overview of a new method of estimating the
decision parameter associated with the economic
threshold using an evolutionary algorithm for sample
design is as follows. By their nature, evolutionary
algorithms search for the fittest member of a
population by creating an initial population,
evaluating the fitness of each population member, using
the characteristics of the fittest members to create a
second more fit population and so on, until the
characteristics of the fittest population member are
identified. If fitness of a potential value of the economic
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threshold is measured as consistency with the logical
payoff restrictions (4)-(6), then an evolutionary algorithm
can be used to create a sample (population) of candidate
threshold values, evaluate the fitness of each candidate
value, use the fittest values of the sample to create a
second sample and so on, until the fittest threshold value
is identified. In the new method, an evolutionary algorithm
15 used not only to derive an estimate of the economic
threshold from data but also to indicate data samples
needed sequentially to estimate the threshold value. A
more specific overview of a new method of estimating the
decision parameter associated with the economic
threshold is as follows:

Call a potential solution to (1), Ty.

Create, via an evolutionary algorithm, a population of
potential solutions for evaluation.

Evaluate each potential solution through comparison
of (5) and (6) to a database of untreated observations
i order to determine statements which are
contradictory.

Use a monetary measure of the total extent of logical
contradictions of each potential solution to gauge
fitness.

Combine the fittest potential solutions to generate a
new population of potential solutions which 1s then
utilized as in step (c).

Continue this process until the solution is found.
Note that a key feature of the method 1s a sequence of
samples based on processing of logical operations to
achieve fitness; hence, the experimental design used to
generate data is determined by an evolutionary algorithm
aimed at directly estimating the economic threshold.

The specifics of steps (¢) and (d) in the overview are
as follows. A bmary coded form (a chromosome in the
language of evolutionary algorithms) of a potential
solution 18 denoted by T, . Then f(D, T,) 1s defined as a
mone-tary measure of the extent of the contradiction of T,
with (5) plus a monetary measure of the extent of the
contradic-tionof T, with (6):

f(D,T, )=

D {max(v(D, T v(0,6)-v(D, Tyl
(7)

maX(Tk ’Ei)7 Tk

[ +[max (v(D, Ty ),

5- T
v(0,50-v{0,5)][

max( T, .g;)— 5
T

Where, the summation in (7) is over a database of
distinet observations, 1=1, 2, ..., n, for which v(0, €) 1is
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available. Hence, the fitness of (D, T,) is tested against a
sample of n untreated payoffs in search of contradictions.
Equation 7 consists of two terms where each term is a
product of two elements shown in brackets. The first
bracketed element in each of the terms is a monetary
measure of the extent of contradiction of (D, T,) with the
corresponding where the summation n (7) s over a
database of distinct observations, 1=1, 2, ..., n, for which
v(0, €) 1s available.

Hence, the fitness of (D, T,) 1s tested agamnst a sample
of n untreated payoffs m search of contradictions. Eq. 7
consists of two terms where each term 13 a product of two
elements shown in brackets. The first bracketed element
in each of the terms is a monetary measure of the extent of
contradiction of (D, T,) with the corresponding condition
from (5)-(6). The second element in each term is an
indicator of the condition on which the contradiction is
predicated. Appropriate evaluation of the indicators
requires that numerators in ratios be evaluated first and
the ratio set to zero if the numerator 1s zero.

Note that (5) requires that T, satisfy v(D, T,) > v(0, €)
for all € > T,. Hence, for an observed value of € > T,, say
€, the simultaneous mequalities v(D, T,) < v(0, €) and €>
T, signal a contradiction with the necessary condition (5).

The difference, v(0, €) - v(D, T,), provides a natural
measure of the extent of the contradiction of T, with (5)
and 1s expressed in monetary units. On the other hand, if
€> T, and v(D, T,) = v(0, €, then T, does not contradict
the necessary condition (5) and, of course, an appropriate
measure of the extent of the contradiction with (5) should
be zero. Observe that the expression, max(v(D, T,), v(0,
e))-v(D, T,), provides a consistent measure of the
contradiction with (5) for €> T, where, max(+) is the larger
of its arguments. This is the case since, this expression
takes on the value v(0, €) - v(D, T,) whenever, v(D, T,
<v(0, g) and is zero otherwise. Similar reasoning reveals
that the expression, max(v(D, T, v(0, €)-v(0, €),
provides a consistent measure of the contradiction of T,
with (6) for €< T,.

The first element m the product in the first term of the
summand of (7), [max(v(D, T,), v(0, €)) - v(D, T,)]. 1s the
extent of the contradiction of (D, T,) with (5) when > T,
The second element in the product in the first term of the
summand of (7),

[max (Tk= S )_Tk ]

g— Ty

ensures that the condition, €> Ty, which must be satisfied
1in order for [max(v(D, T,), ¥(0, €)) - v(D, T,)] to represent
a contradiction with (5), holds. To see this, observe that
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[ma.X (Tk’ Gi )-Tk ]
&~ T

is one if > T, and is zero otherwise. Similar reasoning
reveals the product in the second term of (7) represents a
contradicion of T, with (6). Fmally, f{iD, T) s
nonnegative since both elements inboth of its terms
are non-negative.

The sigmficance of the fitness expression (7) for
successful estimation of the economic threshold based on
fitness is derived from the following proposition.

Proposition: Suppose, a database of untreated
observations, €, evenly spaced by design over a range
which encom-passes both the economic threshold and
any value of T, whose fitness will be evaluated. The
solution to (1), say (D, T), minimizes (7) and if the number
of distinct observations, n, for which v(0, €) 1s available
grows large, then the T, which, minimizes (7) also solves
(1); ie., (D, T) ¢ argmin
(Tc)

(D, T,) and lim,,. argmin
i)

(D, Ty )= argmin E[v(D, T)].
T)

Proof: See Appendix B.

The proposition assures that the solution to (1),
which defines the economic threshold, necessarily
minimizes (7) and that the minimum of (7) is the solution to
(1) 1f the sample 13 large. While it 13 important not to
generalize from a single numerical example, a good
solution to (1) 1s found n the next section through pursuit
of the minimum of (7) using a sequence of relatively small
databases.

Appendix B: This Appendix provides a proof of the
proposition contained in the text. Suppose that a database
of distinct observa-tions, €,1=1, 2, ..., n, meluding v(0, €)
1s available. The € are assumed to be evenly spaced over
a range which encompasses both the economic threshold
and any value of T, whose fitness will be evaluated.
Renumber and rearrange the database if necessary to
give,€,< €,< ... <€, L.e., place the untreated observations
into ascending order. Assume that, n is chosen large
enough initially to ensure that for Tybelow the solution to
(1), € -€-1 <e- A, where, A, solves v(0, €)-v(D, A)=0
and for T, above the solution to (1), €, - €-1 < €,- A, where
A, solves v(D, A)-v(0, €) = 0. This assumption on n
simplifies the proof of the second part of the proposition
by eliminating the need to deal with otherwise
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uninteresting gaps in the fitness function (7). Now
consider the fitness of T, f{D, T,), shown as (7) in the text
and denote the solution to (1) as (D, T).

To see that D, T,) =01f (D, T,) = (D, T}, recall that,
under the agsumptions contained in the text,

argmax
T

E[v(D, T)] satisfies v(D, T) =v(0, T), v(D, T) > v(0, e ) for
alle > T andv(D, T) <v(0, €) for all € < T. Now consider
the fitness of the solution to (1), f(D, T), in light of these
requirements. Observe that for all 1 such that €= T, both
elements of both terms of f{D, T) are zero. For all i such
that €> T, the first element in the first term, max(v(D, T),
v(0, €)) - v(D, T}, 1s zero since viD, T) = v(0, €). Also, the
second element in the second term,

max(T,g; )-5;
T*Ei

is zero since €> T. For all 1 such that €< T, the second
element in the first term,

max(T,s; )-T
S -T

1s zero since €< T. Also, the first element in the second
term, maxHvHD, TL, vHO, e LL- vHO,e L, 1s zero since v(D,
T) <v(0, €). Hence, from the properties of the solution to
(1), fiD, T) = 0. Moreover, since f{D, T,) 1s nonnegative, it
1s clear that no (D, T,) can provide a fitter solution to (7)
than does the solution to (1).

To see that f{D, T,) = 0 only if (D, T},) = (D, T) as the
number of distinct observations in the untreated database
grows large, consider again the fitness of T,, f(D, Ty,
shown as (7) in the text. Suppose f(D, T,) = f{(D, T) = 0.

From (7), this can only occur if at least one of the
elements in the product [max(v(D, T,), v(0, €)) - v(D, Ty)].
[maxIT,,eM-T, € -T,]

max(T,s; )-Ty
St

and at least one of the elements in the product [max(v(D,
Tk): V(0> El)) - V(0> €1)]

max(Ty.s; )-5

Ti—5

are zero for all €. If T, = T, then both elements in both
products are zero for all €, as described earlier. If T, < ¢
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< T < g1, then the second element in the second product
is zero so the second product is zero, however, both of
the elements in the first product are positive yielding a
positive fitness. If T, > e¢+1 > T > ¢, then the second
element in the first product is zero so the first product is
zero, however, both of the elements in the second product
are positive yielding a positive fitness since untreated
profit 1s higher than treated before the optimal threshold
and treated profit is higher than untreated after. Note
however, that for T=T + A where A is such that €< T +
A < g+1at least one of the terms m both products will be
zero giving a fitness of zero despite T, # T. However, as
an grows large €, ,- €, IMi T, IMT, I zero for all €. If Ty,
= T, then both elements in both products are zero for all €,
as described earlier. If T, < €, < T < €+1, then the second
element in the second product 18 zero so the second
product is zero, however, both of the elements in the first
product are positive yielding a positive fitness. If T, >
€+1 > T > g, can be made arbitrarily small, requiring that
D be made arbitrarily small as well, giving the result.

A NUMERICAL EXAMPLE

A numerical example 1s used to illustrate the
estimation approach described in the previous study. A
model is specified in order to generate data which are
assoclated with an example where the optimal decision
parameters are known. Estimation based on fitness (7) is
then used to identify the solution to (1) using only the
data which have been generated. Hence, the functional
forms and parameters which generate the example data are
neither estimated nor used in estimation. Ultimately, the
approach identifies a sequence of experiments needed to
best "zero in" on the economic threshold based on fitness
(7). In tlus example, the following expression, based on
functional forms contained in Liu ef al. (1999) simulates
the outcomes of experiments; i.e., is used for v(x, €).

V (x, €) = ply, - a€ exp (-bx)] - ox (8)

Where, pis the price of the agricultural product, y0 is
vield per acre without pest damage, a is yield loss per pest
unit, € 13 number of pests per acre, exp(-b x) 1s the
proportion of surviving pests with parameter b and
pesticide treatment rate, x and the total cost of pesticide
materials and application is given by ¢ x. Satisfaction of
the single crossing property by (8) 1s demonstrated in
Appendix C; Therefore, the proposition shown m the
preceding section is applica-ble. The following values are
assumed for the economic and technical parameters: p =
3,y,=100,a=4,b=1,¢=50,D = 3and e ~N (50, 10).

For these wvalues of the economic and technical
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parameters, the optimal value of T, determined by solving
(2), is T = 48.2287. Expected net revenue, E[v(D, T)]
evaluated usmg (1), 18 241.536. Note again that the
structure given in (8) along with numerical parameter
values associated with (8) would not be known or
estimated in practice rather only payoffs generated by
experimentation would be observed. The expression (8)
and numerical parameter values are used to sunulate
experimental results for the purpose of this example.

Processing of logical operations for fitness indicates
the sequence of experiments that are needed. A range of
25 evenly spaced observations, €, are used in
conjunction with (8) to generate an initial database
consisting of observa-tions on v(0, €); i.e., payoff without
pesticide treatment (practical aspects of selecting such a
range and number of observations are discussed in the
next section) and referred to subsequently as the
untreated database. The observa-tions on xi, € and vi
assoclated with the mmitial untreated database are shown
in Table 2. Note that the last column Processing of logical
operations for fitness indicates the sequence of
experiments that are needed. A range of 25 evenly spaced
observations, €, are used in comjunction with (8) to
generate an 1nitial database consisting of observations on
v{0, €); i.e., payoff without pesticide treatment (practical
aspects of selecting such a range and number of
observations are discussed in the next study) and
referred to subsequently as the untreated database. The
observations on xi, €, and vi associated with the initial
untreated database are shown in Table 2. Note that the
last column of Table 2 shows observed net revenue per
acre when the pest population associated with a row in
the table is left untreated. Observed net revenue per acre
1s simulated for purposes of this example using (8) and the
parameter values shown earlier; hence, for the case of
observation 1 in Table 2, observed net revenue per acre 1s
257.40 when a pest population of 35.5 is left untreated
(257.40 =3[ 100 - 4 (35.5) exp(- 1 (O] - 50 (O)).

Figure 1 shows a graph of the fitness function (7)
utilizing the untreated database (Table 2) for a large
mumber of potential threshold values (T,). It seems
intuitive that threshold values further removed from the
true threshold value will conflict with more points in the
untreated database and will therefore generate larger
fitness values from (7). This intuition is borne out by the
u-shape of fitness shown in Fig. 1 and is the explanation
for the basic u-shape of the graph of the fitness function
generally. The "jagged" appearance of the u-shaped
graph of fitness follows from the number of observations
(25) and spacing of points in the untreated database. With
a sufficiently large number of observations, a monotonic
relationship between proximity of the threshold to the true
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Table 2: Tnitial database on treatment (xi), Pest Level (g)) and Payoft (vi)

Observation Treatment Pest level Payoff
1 0 355 257.40
2 0 36.3 256.44
3 0 371 255.48
4 0 37.9 254.52
5 0 38.7 253.56
6 0 39.5 252.60
7 0 40.3 251.64
8 0 41.1 250.68
9 0 41.9 249.72
10 0 42.7 248.76
11 0 43.5 247.80
12 0 44.3 246.84
13 0 45.1 245.88
14 0 45.9 244.92
15 0 46.7 243.96
16 0 47.5 243.00
17 0 48.3 242.04
18 0 49.1 241.08
19 0 49.9 240.12
20 0 50.7 239.16
21 0 51.5 238.20
22 0 523 237.24
23 0 53.1 236.28
24 0 53.9 235.32
25 0 54.7 234.36

104

8-

467

&
=
4
24
T e h_'l\ T
40 45 50 55
Threshold

Fig. 1: Graph of fitness (f(D, T,)) given the mitial
untreated database

threshold and fitness 1s revealed. The slanted lines
connecting the vertical portions of the graph result from
the "missing" untreated values between observations in
the untreated database and so do not fully reveal the
underlying mono-tonic relationship. The distance
between vertical portions of the graph reflects the spacing
of points m the untreated database and reveals threshold
values where a change in the number of points which
conflict with the threshold occurs. Finer spacing of the
untreated database reduces the "jagged" appearance.
In the current example, an untreated database with
approximately 200 points produces a smooth appearing
graph when using the same scale shown in the figure. The
graph reveals an approximate value of the fittest
threshold; hence, given experimental observations for a
large number of potential thresholds (T,), it would be
straightforward to estimate the true thresh-old.
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Table 3: Population of Paotential Thresholds (T,) and Fitness (D, Ty)) by

Iteration
Tteration 1 2 3 4
1 Threshold 50.10 44.49 50.03 53.05
Fitness 0.3402 0.4377 0.4029 0.6003
2 Threshold 50.00 44.44 44.44 50.06
Fitness 0.4309 0.3841 0.3841 0.3753
3 Threshold 44.44 46.00 44.44 48.44
Fitness 0.3841 0.2977 0.3841 0.0000

In order that estimation of the threshold be practical,
it 15 important to limit the number of experimental
observations that are needed. Sequential sampling
directed by an evolutionary algorithm provides a means
of generating the needed information with a sequence of
relatively small databases. Table 3 shows iterations and
the fitness of each potential threshold as determined from
(7). Note that each of the columns labeled 1, 2, 3 and 4 in
Table 3 shows a potential threshold estimate and its
fitness by iteration. A fitness value of zero indicates no
contradictions arise when confronted with the untreated
database. As is evident from the table, only three
iterations with four potential threshold values per iteration
are needed to provide a reasonably good estimate (48.44)
of the economic threshold for this example problem.
Expected net revenue, E[v(D, T)] evaluated using (1) and
this estimate of the economic threshold is 241.535 and
differs by only a tenth of a cent from the Table 3 shows
iterations and the fitness of each potential threshold as
determined from (7). Note that each of the columns labeled
1, 2, 3 and 4 in Table 3 shows a potential threshold
estimate and its fitness by iteration. A fitness value of
zero indicates no contradictions arise when confronted
with the untreated database. As 1s evident from the table,
only three iterations with four potential threshold values
per iteration are needed to provide a reasonably good
estimate (48.44) of the economic threshold for this example
problem. Expected net revenue, E[v(D, T)] evaluated using
(1) and this estimate of the economic threshold is 241 .535
and differs by only a tenth of a cent from the optimal
value. Of course, a larger, more refined untreated database
could provide greater precision if desired in this example
and outside this example as well if permitted by the
relative cost of experimentation. In this example, a good
estimate of the economic threshold was achieved with a
relatively small amount of data. The underlying reason for
the apparent efficiency may be that processing of logical
operations to achieve fitness focuses data collection on
the task of estimating the economic threshold rather than
on myriad empirical issues that might be addressed by a
generic, less focused sample design. The precision of the
economic threshold estimate obtamned in this example 1s
especially noteworthy given that specification of
parametric forms for dosagefresponse and damage
relationships, often only vaguely known, was avoided.
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Appendix C: This Appendix demonstrates satisfaction of
the single crossing property by the payoff function used
in the numeri-cal example contained in the text.
Satisfaction of the single crossing property by the
payoff function, v(x, € ), requires that for x" > x". and ¢’ >
e, v(x, €M)= vix", €")=v(x, €)= v(x", €).
For v(x, €) ply,-a € exp (-b x)]- ¢ x , the single crossing
property requires that
ply,-ae’ ex(-bx)]-cx">ply,-ae” exp (-bx")] - cx”.
=ply,-a€ exp(-bx")]-cx" > ply,-a€’ exp(-bx )] -ex".
The first inecuality implies thatp a €”. (exp(-b x") - exp(-b
x> ¢ (x'-x") which implies that pa € (exp(-b x")-exp(-bx")
= ¢(x’-x") and thus, gives the second inequality.

PRACTICAL APPLICABILITY

This section focuses on practical considerations
related to the estimation approach developed and
illustrated earlier. Three important issues are examined in
tur The approach's requirement that control be exerted
over a pest population level in generating data,
accommodation of heterogeneity of biophysical
relationships and/or other characteristics across farms
and the need to develop an untreated database.

The need for control over the level of a pest
population under experimental conditions 15 not
uncommon and certainly not peculiar to this new
approach. For example, populations of arthropods and
weeds are controlled in experiments using techniques
such as those involving cages and weeding/seeding since
such control is often helpful in generating appropriate
experimental data. Adequate precision 1s provided by
such controls. There do not seem to be any additional
requirements of the approach developed earlier that would
preclude application of such experi-mental methods to
generate the desired sequential samples. Heterogeneity
across farms typically necessitates compromise in
estimation of the economic threshold regardless of
whether the evolutionary or traditional parametric
approaches are used. Efforts by Hall (198%) m a parametric
context are particularly revealing of the issue. Expressly
for reasons of real-world practicality, Hall (1988) extended
the notion of the economic threshold to the regional
(multi-farm) level making the following remark:

"... a farmer might read an Agricultural Extension
bulletin that recommends a pesticide application if the
number of pests per square foot, estimated by a standard
procedure, exceeds the economic threshold reported in
the Agricul-tural Extension bulletin. Budget constraints
don't permit designing experiments and performing
calculations for every farmer. If the threshold is to be
formally calculated rather than picked out of thin air, the
best we can hope for is recommendations applicable to all
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farmers in a region. The economic threshold for
prescriptive purposes could be calculated n a fashion
that optimizes profit to the growing region of farmers for
whom the threshold is recommended."

"... a farmer might read an Agricultural Extension
bulletin that recommends a pesticide application 1if the
mumber of pests per square foot, estimated by a standard
procedure, exceeds the economic threshold reported in
the Agricul-tural Extension bulletin. Budget constraints
don't permit designing experiments and performing
calculations for every farmer. If the threshold is to be
formally calculated rather than picked out of thin air, the
best we can hope for is recommendations applicable to all
farmers m a region. The economic threshold for
prescriptive purposes could be calculated in a fashion
that optimizes profit to the growing region of farmers for
whom the threshold is recommended.”

Hall (1988) mamtains correctly that inter-farm
differences require that research-based threshold
recommendations inevitably nvolve recommendations
believed to be good for the farmers using them as a group
and must be based on representative conditions. Hence,
while the evolutionary approach may enable avoidance of
the need for specific fimetional specifications, it certainly
does not resolve the general dilemma posed by
heterogeneity and will require compromises with respect
to heterogeneity in application similar to traditional
approaches.

Finally, as is clear from the numerical example in the
preceding section, application of the evolutionary design
requires development of an untreated database. The latter
must be based on a range of untreated population levels
that includes the true threshold value as well as any
population levels that will be evaluated during the course
of estimation. Since the true threshold value 1s unknown,
the untreated database must be based on a range that 1s
believed to include it. Once a range has been selected, the
desiwred precision for the threshold estimate can be used
in conjunction with the range width to determine the
number of untreated observations that are needed.
Clearly, the more prior information there is about the
threshold value, the narrower the range can be and the
lower the resources devoted to estimation can be. If a
range 1s specified that does not melude the true threshold
value, then it is likely that poor fitness will be observed
and expansion of the untreated database will be
warranted.

CONCLUSION

A new approach to estimating popular crop
protection protocols was presented. The approach to
collecting data for use with the approach is based on
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sequential sampling driven by processing of logical
operations by an evolutionary algorithm to achieve a fit
estimate of the economic threshold. The sequential
sample design differs sigmficantly from that underlymg
traditional approaches to estimating the economic
threshold; however, it enables the economic thresheld to
be estimated without requiring specific parametric forms
for dosage/response and damage relationships. The
approach is designed for implementation in a research
environment where experimentation can be pursued
sequentially to generate information. A numerical example
llustrates the approach and reveals its effective-ness.

The effectiveness of the approach in the numerical
example may suggest that other management decision
problems where protocols are characterized by rules of
thumb may also be addressable by suitable modification
of the fitness concept though this remains to be seen.
Even so, a number of issues related to use of the method
in practice need additional research to arrive at protocols
that can be counted on. In particular, applicability of the
approach will require additional consideration of fitness
mn the context of a changing economic and biophysical
environment and the manner in which efficiency in
pooling of data generation can be achieved.

While untreated observations are often part of
experiments in a research environment, such observations
are rarely regarded as a significant part of data
development for estimation of parametric forms (Moffitt,
2001). Results here suggest that unless untreated
observations are featured as a sigmficant part of data
development, estimation of popular crop protection
protocols will probably rely on specific forms for payoffs
and nature's mixed strategy. Because of the nature of
popular crop protection protocols, untreated payofts
contain substantial information for decision which may be
leveraged by evolutionary processing of logical
operations to permit estimation.

Finally, the defimtion of fitness utilized here proved
effective in the numerical example presented. Whether
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alternative definitions could prove more effective is a
direction which may prove useful in further related
research.
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