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Efficiency and Input Specific Technical Efficiency of Irrigated Agriculture in Tunisia
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Abstract: In this study, we propose a hybrid of a stochastic frontier regression. The proposed model and
estimation differ from the conventional model of Aigner, Lovell and Schmidt. The model combines a stochastic
frontier regression and a random coefficient regression: (a Stochastic Varying Coefficient Frontier Model)
(SVCF) to estimate Technical Efficiency (TE) and Single Factor Specific Technical Efficiency (SFTE) of Tunisian
farmers for wrigated crops such as: vegetable farming cereal and fruit-trees. The proposed single factor measure
of efficiency 1s based on Kopp’s notion of non-radial technical efficiency and it 13 shown that in the context
of the SVCF model could provide firm-specific estimates even with inflexible production frontiers, such as the
Cobb-Douglas. The empirical results indicate that the mean value of technical efficiency for all farms is
estimated to be 54.7% for vegetable farming, 67.2% for cereal and 71.2% for fruit-trees. Input specific technical

efficiency of wrigated water 1s under 40% for all crops.
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INTRODUCTION

The role that the agricultural sector plays in the
economy of developed countries has been recogmised for
many years. The main challenge of policy makers in these
areas 13 how to attain food self-sufficiency by promoting
output growth. Iirigation 13 one of the main wmportant
technologies of improving farm output and mcome.
However, water resource scarcity continues to
characterise water demand and supply for Tumisia’s
increasing economic and political pressure for water
policy reform.

Agriculture by far the largest user of water, accounts
for roughly 80% of consumptive use. Further, the
application of highly subsidised associated mputs such
as water has drained high cost policies and attention has
turned towards better usage of the existing irrigation
mnfrastructure and improving water conservation. Water
resources mn Tumsia come from rain and underground
water reserves. Ram 1s very variable across regions,
seasons and years. Neglecting the salinity factor leads to
consider that the North of the country possess most
water resources (60%) while the centre and the South
have respectively, 17 and 23% of them. From these
potential resources, the Mimstry of Agriculture assesses
that about 88%, ie, 3,995 Mm’ are immediately
exploitable. From this volume, 76%, amounting to 3,043
Mm’® are already developed. Water demand in Tunisia has
steadily risen during the last 15 years. The wrigated area

has more than doubled. The actual use of water
considerably fluctuates across years depending on the
needs of agriculture. In part because of this uncertainty,
the present water pricing system 1s far from reflecting the
economic value of imgation water. The official price of
water (between 0.032 and 0.06 TD m™) correspends to the
average cost with integral coverage of exploitation costs
and partial reimbursement of mvestment.

However, the contribution of peasants to mvestment
cost 18 rarely perceived. Similarly, the rental charges that
are carried forward only cover from 15-60% of the
exploitation costs. The deficit is filled with public
subsidies. The variability of unit cost mostly results from
the low wrigation intensity mn some regions. Irrigation
efficiency as a standard engineering measwure has been
traditionally used to assess water use management in the
MENA region. Water use efficiency as applied in
production economics theory, however has received less
attention. To the knowledge in the MENA region, the
only study which focus as on water performance
measures using the production economics theory,
concerns 11 mdividual farms producing spring tomatoes
under drip wrigation in the Battinah region of the
Sultanate of Oman (Omezzine and Zaibet, 1998). This
study fills this gap with a case study of Tumsia. The
measurement of water specific technical efficiency of
Tunisian farmers for wrigated crops can provide useful
insights mto their potential for enhancing farm output and
LMproving water resource use.

Corresponding Author: Tawfik Ben Amor, LEFA Institute of Advanced Business Studies of Carthage (IHEC),

Carthage Presidency 2016, Tunisia



Agric. J., 5 (6): 329-337, 2010

MATERIALS AND METHODS

Theoretical framework: In an output oriented manner,
technical efficiency 1s measured as a ratio of realized
output to the potential output. The reliability of this
measure of technical efficiency depends
accurately the potential output is measured. It 1s in
general assumed that the potential output 1s obtained by
following the best practice methods, given the
technology. This implies in tumn that the potential output
1s determined by the underlying production frontier, given
the level of inmputs. Since by definition, technical
efficiency is the discrepancy of the actual (realized)
output from the production frontier, its measurement
cannot proceed without the estimation of the production
fronter.

The estimated frontier depends on the assumptions
about the nature and the determinants of best practice
methods. The former 15 related to the question of whether
the best practice is a realized method inherent n the data
or it may not be realized yet. Consequently, the potential
output used to measure technical efficiency may or may
not be realized. Up to now in the efficiency measurement
literature, all but Kalirajan and Obwona (1994a) have
agreed that the frontier results from observed output
levels, produced by the firms using the best practice
methods. In contrast, Kalirajan and Obwona (1994a)
suggested that the potential output need not necessarily
be observed in the data at hand. They attempted to justify
that by arguing that the best practice method varies from
mput to input and thus not every firm would be applymng
all input efficiency.

However, it seems more reasonable whatsoever to
think of best practice as referring to the whole set of
inputs used by a firm instead of each input separately.

On the other hand concerning the determinants of
best practice methods, two alternative models have been
developed which are referred to as
non-neutral frontier models. The former assumes that
technical efficiency 1s mdependent of the levels of input
used but is dependent on the method of application of
inputs. Thus, even for identical levels of the same inputs,
output differs due to differences in the methods of
application. In tumn the effectiveness of the methods of
application is determined by various organizational
factors influenced by socioeconomic,
demographic .. characteristics that affect the
managerial ability of firms. In such a case, the estimated
frontier is modeled as a neutral shift of the traditional
average production function.

In contrast, the non-neutral frontier model assumnes
that both the methods of application of inputs as well as
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the level of inputs (i.e., scale of operation) determine the
potential output and thus, the estimated frontier is
modeled as a non-neutral shift of the traditional average
production fimction. The non-neutral shift 15 related to
that firms may acquire more information, knowledge and
experience with respect to one input’s productivity than
the other (Huang and Liu, 1994). Apparently, it seems
intuitively more appealing to argue that technical
efficiency stems from two sources: firm-specific intrinsic
characteristics and input levels.

Two alternative approaches have been used to model
non-neutral production frontiers. On the one hand,
Kalirajan and Obwona (1994a) developed the Stochastic
Varying Coefficient Frontier (SVCF) model that related the
notion of the non-neutral frontier with cross-sectional and
possibly temporal variation m production response
coefficients which include not only the intercept term as
in the traditional frontier framework but also the slope
coefficients. The idea of slope varying coefficients is
consistent with the methods of application of mputs to
depend on the level of inputs.

On the other hand, Huang and Liu (1994)
accommodated the notion of the non-neutral frontier by
modeling the one-sided error term measuring technical
efficiency as a function of not only the variables affecting
the managerial and organizational ability of firms but also
of mput levels, including interaction terms between them.
Besides conceptual differences, these two non-neutral
frontier models require quite different econometric
estimation techniques.

In particular, Huang and L (1994)s model is
estimated with maximum likelihood which necessitate the
imposition of particular distributional assumptions
regarding the one-sided error term. In contrast, the SVCEF
model dispenses with this assumption as it can be
estimated with generalized least squares by using
Hildreth and Houck (1968)’s random coefficient regression
procedure but the additive error term (appended to
account for statistical noise) cannot be distinguished from
the randomly varying intercept when only cross-section
data are available (Kalirajan and Obwona, 1994b;
Tsionas, 2002). Thus in a cross-sectional, setting, SYCF
18 deterrmimstic frontier model. This 1s not true, however
with panel data as it 13 possible to have a (cross-sectional)
random intercept and noise at the same time
(Kalirajan et al., 1996; Tsionas, 2002).

Despite its attractiveness as a non-neutral frontier
model, SVCF’s assumptions about the nature of best
practice methods raise doubts about the reliability of the
resulting efficiency measures. In particular, it is shown
that as long as the best response coefficients are coming
from different firms in the sample which as noted by
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Kalirajan and Obwona (1994a) is quite likely to happen in
empirical applications, the resulting frontier is not well
defined in theoretical grounds and infeasible for any
sample participant. Consequently by using it to compute,
the maximum attainable output yields misleading results
regarding both the magnitude of technical efficiency and
the ranking of firms according to their efficiency scores.
Moreover, Kalirajan and Obwona (1994a) measure of
single factor technical efficiency (defined as the ratio of
the actual to the maximum response coefficient for each
mput) also raises concerns about its appropriateness as
an efficiency measure.

Measuring technical efficiency and input single factor
technical efficiency in the stochastic varying coefficient
frontier model: The first concern throughout this study
is to estimate production frontiers of farmers in irrigated
agriculture using micro-data from the Tunisian national
farm mmgation survey. We emphasize the empirical use of
random coefficient models when analysing the individual
farm technical efficiency.

The production frontier approach is
mvestigate farm techmcal efficiency. It refers to farmer’s
ability to produce the maximum possible output from a
given set of inputs and technology. Many empirical
studies have so far investigated the pattern and source of
farm technical efficiency in developed countries. A few
analyses, however have focused on the economic
inefficiency in irrigated crops using water resource as
input in the production frontier. A previous study
developed by McGuckin et al. (1992) provided partial
results since, it accounted only for water i the
technology process and excluded other production
mputs.

The economic implications of this finding are limited,
especially when we amn to stress the importance of
examining water substitution in production relationships
and to seek the possibilities of adjusting the techniques
i farm wrigation practices to accommodate changing
scarcities of water. In many applications, technical
efficiency is estimated using the stochastic frontier
production function. The main assumption is that the
frontier production function is a neutral shift of the
conventional production function. This may be restrictive
especially if we allow for heterogeneity among the
farmers’ production process in using their inputs.

In a recent study, Croppenstedt and Demeke (1997)
has shown how efficiency measures could be derived
from a random coefficient production model This
approach has the advantage of relaxing the traditional
assumption of a neutral-shift of the frontier from the
conventional production function. Besides, estimates of
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input-specific technical efficiency can be computed
without imposing the restrictive assumption that specific
technical efficiencies depend on the levels of the inputs
used. Hence, let us suppose that the production
technology of farmers i1s expressed as a Cobb-Douglas
production function, such as:

K
In{y; ) =f; + ZB&; In(x,)+g 1)

=1
Where:
y, = The output of the ith farm
x = A vector conditiomng factor that affect

production

B = aK vector of unknown parameter for each unit T
g, = Assumed to be independent and identically

distributed as N (0, %)

We use the Swamy (1971) random coefficient
approach which assumes that each farm parameter vector
B; varies from the mean response by a vector of random
errors |y that 1s:

Ba =By + 1y 2)

Substituting Eq. 2 and 1 gives:

Iy, ) =P, + o+ DB+ i) ve G
k=1

In(y ) =P, + isk Inx, )+ W, iuﬂ{ In(x, ) e, (4

K
In(y, ) =B, + 3B, Inx,) + w, &)
k=1
y, =XB+w, (6)
Where:
w, =X +5

Further, we assume that: p,~ N (0, Q) with Q = diag (1,
o 0/, 0,2 Sothat we have:

Viw, )=+ X,QX, (7

So, Eq. 3 can be written more compactly, for all the n
observations as:
Y =Xp+W (8)
where, X 1s an NxK matrix of stacked x, and Y, B and W
are vectors of order N, K and N, respectively. A GLS
estimate of the mean response P is given by:
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B= (X=X XETY
Where:
T =E(ww)=D_(I, @D +¢’l
D, =diag(X---X,)
Since, variances o° and ¢*, are not known, we adopt
the Hildreth and Houck (1968) procedure. Let us write the
parameter vector d ag:

a=(g’.c’)

An unbiased estimator for 0 is given by:

. YMY
G =
n-k
Since, we have:

by

HUHEDY

=1 k=

jid
2,22
m;X; Oy

This can be written more compactly as:

E(W) = MXa,
Where:
M=[m, |=T-XXX"X

and a dot indicates a vector (matrix) derived by squaring
each element. Hence, an estimator of & would be:

o = (XM X)) XMW

After inserting the estimates of € and o’in Eq. &, we
obtain the feasible GLS estimator of P. Then, the
individual estimates of the P, 's are given by Gniffiths
(1972):

By =B+ QX (X QX (Y, - X ) ©)

Having Eq. 1, Kalirajan and Obwona (1 994a) followed
the tradition of the frontier literature and measured
output-oriented technical efficiency by the ratio of actual
to potential output, i.e., TE =y/y*. However, in calculating
the potential output that serves as a benchmark they used
the maximum of the estimated values of the response
coefficients for each mput which are defined as:

B, =Max{f, +,} 1.0 k=01.Kk (10
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Then, the frontier is given as:

In(y; ) =By, + i By In(x,, ) an

The 1dea behind this formulation 1s that both the
intercept and the slope coefficients for those who are
using the best practice methods would be larger than for
those who are not following the best practice methods
(Huang and Kalirajan, 1997).

There are two equally possible roots for the origin of
the maximum response coefficients. On the one hand, it
may be argued that not every firm would be applying all
the inputs efficiently and thus, the maximum response
coefficients need not come from a single firm. The main
reason for this 1s that best practice methods vary from
input to input. On the other hand, we may argue that a
firm which uses same inputs efficiently may also use all
inputs efficiently and thus the possibility that all maximum
response coefficients may come from the same firm cannot
be completely ruled out.

The implications of these two possibilities for the
measurement of technical efficiency are very different. In
the case where all maximum response coefficients are
coming from the same firm, Eq. 2 represents an apparently
well defined frontier and it can be used to provide
reasonable estimates of technical efficiency as well as a
consistent ranking of firms according to their efficiency
scores.

However, when the maximum response coefficients
are coming from different firms in the sample which as was
noted by Kalirajan and Obwona (1994a) 1s quite likely to
happen in empirical applications, two problems arise. First,
the frontier described by might not be feasible for any
sample participant, inplying that none of the firms in the
sample operates with full efficiency. Tt is obvious that
when all best response coefficients are coming from the
same firm, there is at least one firm in the sample that
operates efficiently. If however, the best response
coefficients are coming from different firms, none of the
firms in the sample operates with full efficiency. This 1s a
rather simply way to check the origin of the best response
coefficients. For a deterministic frontier model, this
contradicts with the cormerstone assumption in efficiency
measurement literahure, namely that efficiency is a relative
concept measured with reference to observed best
practice outcomes and a benchmark that is determined by
some peer firms in the sample.

In a stochastic frontier model, it 18 quite likely that
none of the firms in the sample operates with full
efficiency but this s due to stochastic disturbances and
not because the frontier 1s not feasible to sample
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participants. Second, the resulting frontier in may not be
well defined m the sense that it violates certain theoretical
properties. Consequently, the estimated technical
efficiency scores are inconsistent. Even though, the
aforementioned problems are not meet at the empirical
results reported by Kalirajan and Obwona (1994a) and
Salim and Kalirajan (1999) as the maximum response
coefficients are coming for same firm, there are inherent in
other studies. For the Kalirajan and Obwona (1994a) study
in particular which reports estimates of the potential and
actual output for each firm separately, it can be seen that
the maximum response coefficients are from the firm with
identification number 43. For example, Kalirajan and
Obwona (1994b), Huang and Kalirajan (1997), Kaliajan and
Huang (2001 ) as well as the present study, found that the
maximum response coefticients are coming from different
firms.

A different procedure for calculating technical
inefficiency scores is proposed in this study to resolve
the above shortcomings of the SVCF model which relies
on the idea that best practice methods refer to the whole
set of inputs used by a firm instead of each input
separately. Starting with the basic relation that v, = £ () TE,
where f (.) refers to the production frontier we can rewrite
it for the Cobb-Douglass form as:

1n<yi):80+§ By In(x, )+ InTE, (12)
k=1

On the other hand, by explicitly considering the
random coefficient formulation of Eq. 4, it may be written
as (Notice that this formulation is observationally
equivalent to a (fixed coefficient) neutral frontier model
with heteroscedastic statistical noise (Salim and Kalirajan,
1999; Tsionas, 2002) but 1t 1s estimated with a completely
different method):

K K
In(y y=0,+ ZBk In{x, )+, + Zl“l‘ik In(x, ) (13)
k=1 k=1
Then by comparing Eq. 10 and 11 vields:

K
InTE, =, + ¥ u, Inix,) (14)

k=1

Notice that Eq. 14 is completely analogous to the
measure of techmcal efficiency used by Huang and Liu
(1994) in the maximum likelihood formulation of the
non-neutral frontier model. Given the assumptions about
M, it 18 clear that the expected value of InTE in Eq. 14 15
equal to zero implying that the expected value of TE, is
equal to one.

This means that the estimated values of TE may be
less or greater than one. To ensure that estimated values
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of TE are bounded above by one, the following
normalization suggested by Schmidt and Sickles (1984) 1s
employed:

K
InTE, = max {ﬁku + E 0, ln(xlk)} -
i=1

K
{ﬁ‘iu + 2 Ly ln(Xlk)j
i1

(15)

Where " denotes estimates values. This normalization
amounts to counting the most efficient firm in the sample
as fully efficient and to compare efficiency across firms in
a consistent manner. On the other hand, Kalirajan and
Obwona (1994a, b) used the ratio of the actual to the
maximum response coefficients for each input to obtain

firm-specific estimates of input-specific technical
efficiency. That is:
ITE" __ B (16e)
max{Blk}
Where values <1 indicate inefficiency. The

inappropriateness of Eq. 16 as an efficiency measure
arises from the fact that 1s based on production-elasticity
which following Forsund (1996) are  frontier
measures. Thus, Eq. 16 lacks any theoretical foundation
for being an appropriate efficiency measure. Instead
Kopp (1981)s notion of ITEY, may be used to identify in
a theoretically consistent way the technical efficient use
of individual inputs. In particular, Kopp (1981)’s measure
of ITE" is defined as the ratic of minimum feasible to
observed use of each input conditional on the production
technology and the observed levels of output and other
puts, 1.e.,

ITEf = Xy

Xlk

(a7

The minimum feasible use 3, for the kth input
coincides with that quantity necessary to ensure technical
efficiency without altering the quantities of other inputs
and the level of output produced. Then, it is clear that
Kopp (1981)’s measure of ITEY, is non-radial and has an
input-conserving orientation which however carmot be
converted into a cost-saving measure. According to
Reinhard et al. (1999), the minimum feasible use of the K
input for the ith firm can be computed through the fitted
frontier fimetion assuming:

n(y,) =P, + T Incx )+ o) (8)
k=1

Then, there are two alternatives: either we can solve
Eq. 8 for In (x3) and then compute ITE , using the
observed x;, or we can combine Eq. 8, 3 and 5 to show
that:
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INITE —Inx, ~Inx, = 215 (19)

I

Then by using again Schmidt and Sickles (1984)
normalization, we can compute mput-specific technical
efficiencies as:

i
iy + E f In(x,)
InITEY = max = - (20)
B

K
plﬁﬂ + 2 nlk 1n(X1k)
i=l

B

This ensures that they lie in the interval.
RESULTS AND DISCUSSION

The data are taken from a national survey focusing of
irrigated agriculture conducted by the Tunisian Ministry
of Agriculture in 2006. The sampling scheme is stratified
by zone (11 regions equally distributed on an East-West
axis across the three agro-climatic region: North, Centre
and South), irrigation source, perimeter size and perimeter
age. About 250 agricultural producers have been
surveyed, leaving 218 observations (Table 1) because of
missing or erroneous data.

The objective of the survey was to gather basic data
about producers, their production unit and the use of
water. Since, the collection was organized around the
different crops, we dispose of input and output
information that is specific to three crops: fruit-trees,
vegetable farming and cereal.

The main variables entering the stochastic varying
coefficient frontier model are as follows (Table 2).
Descriptive statistics for the sample of 218 households by
crop are shown in Table 3. Data on each input and output
were collected by crop. Inputs include the use of farmyard
manure fertilizer, human labor, mechamec traction, ammal
traction irrigated water, in each quantity was
recorded.

Parameter estimates of the Cobb-Douglas stochastic
varying coefficient frontier model for imigated crop
growing farms in Tunisia are shown in Table 4. The
hypothesis of random coefficient variation cannot be
rejected by the Breusch-Pagan LM-test lending support
to stochastic varying coefficient model. Indeed, individual
response coefficients vary considerably among sample
farms (Table 1) implying that farmers are using quite

Table 1: Interviewed perimeters

Regions Perimeter surveyed No. of investigations
Ariana El Battan, Sidi Naji 24
Bizerte Mateur, Ghezala 13
Nabeul Menzel Bouzelfa, Lebna 27
Ben Arous Mornag 13
Jendouba S.Esssebt, Bouhertma 19
Zagouane Zagouane 15
Kairouan Sidi Saad 11
Hajeb 22
Mahdia Bir Ben Kamla, Hiboun 14
Sousse Chott Meriam, Sidi Bouali 20
Gabés Metouia, Zerig, Ketana 21
Kebeli Matrouha 19
Total - 218

Table 2: Description of output, input and farm-specific variables

Variables name Description

Output (Y) Output for a particular crop (in ton)

Input variables

Manure (X1) Farmyard manure fertiliser, ton

Labor (X2) Labor of farmer/family labor, regular and
casual labor (in days)

Mechanization (X3) Mechanic traction, hours

Animal traction(X4) Animal traction, days

Trrigated water (X35) Among of water applied, in m®

Farm size (X6) Total farm size, acres

different farming practices. Also, mean response
coefficients along with the corresponding t-ratios and
range of coefficient value are shown in Table 4. For all
crop estimate of stochastic varying coefficient frontier
model indicate that irrigated water exhibited the highest
output elasticity (between 0.258-0.343 and significative at
10%) followed by land size (between 0.170 and 0.213).
Mean estimate of returns to scale is found to be close to
unity. The results in Table 4 shows that the maximum
response coefficients are coming from the same farm in
the sample (firm number 12 for vegetable farming, firm
number 15 for cereal and firm number 13 for fruit tree). All
this firm are localized in the north of Tunisia, Hence, the
estimates of farm-specific technical efficiency using
Kalirajan and Obwona (1994a)’s procedure may lead to
meaningful results.

The results of technical efficiency estimate are shown
1in Table 5-7 in the form of frequency distribution within a
quartiles range. The mean value of technical efficiency for
all farms 13 estimated to be 54.7%, for vegetable farming
with a range from 10.7-100 and 67.2% for cereal with a
range from 16.8-100 and 71.2% for fruit-trees with a range
from 27.2-100%.

This result indicates that output can be increased
on average by 45.3% for vegetable farming, 32.8%
for cereal and 28.8% for fruit-tree with the present
state of technology and the same amount of mputs as
before if the technical mefficiency 1s removed completely.
Statistics indicate that 75.6% of the farmers are <50%
efficiency for vegetable farming. Thus, there is
considerable room for mnprovement in the techmical
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Table 3: Summary statistics of output, input and farm-specific variables

Fruit-tree Vegetable farming Cereal
Veraiables name Mean 3.D Min Max Mean 3.D Min Max Mean 83.D Min Max
Output(Y) 11.280 20370 0.03 12000  17.00 31.920 015 300 14.280 19.20 0.90 150
Input variables
Manure (X1) 32.230 56910  3.00 401.50 3970 163.300 0.75 2007 13.540 14.80 0.40 72
Labor (X2) 86470 154400 25.00 980.00 88.60  129.600 250.00 1080 46.040 43.60 30.00 200
Mechanization (X3) 6.383 36.550  2.00 400.00 4.97 5.841 0.00 38 406.900 97.60 32800 606
Animal traction(X4) 18300 39360 5.00 360.00  12.30 26.930 2.00 200 12.290 16.60 0.50 100
Irrigated water (X5) 4478.000  9382.000 200.00  32930.00 1815.00 2298.000 126.00 15000 5107.000  4509.00  1040.00 33300
Land size (X8) 1.682 2266  0.05 18.00 1.02 1.282 0.05 10 2.486 2.28 0.03 12
Table 4: Estimates of stochastic varying coefficient frontier model
Fruit-tree Vegetable farming Cereal
Crop input Coeff. t.student  Range coeff. Coeff. t.student  Range coeffl Coeff. t.student Range coeff.
Manure (X1) 0.092 1.010 0.055/0.174 0.129 1.700 0.012/0.178 0.1500 3.2200 0.137/0.564
Labor (X2) 0.158 2.410 0.0196/0.192 0.157 3.160 0.060/0.255 0.1700 0.3600 0.110/0.187
Mechanization (X3) 0.117 2.320 0.016/0.18 0.169 1.300 0.035/0.174 0.1670 0.8400 0.0589:0.225
Animal traction (¥4) 0.134 0.550 0.101/0.180 0.160 3.310 0.065/0.255 0.1087 3.7000 0.081/0.136
Irrigated water (X5)  0.343 2.400 0.158/0.898 0.260 2.390 0.014/0.348 0.2580 3.6100 0.114/0.385
Farm size (X6) 0.213 1.320 0.13/0.530 0.170 1.670 0.082/1.954 0.1930 0.5400 0.024/0.435
Constant 1.704 7.730 0.113/1.727 0.308 0.940 0.033/0.453 0.9510 0.6500 0.666./3.333
RTS - 1.057 - 1.045 - - 1.0467 - -
LM - 616.580 - 239.360 - - 106.5200 - -
No.Obs - 130.000 - 207.000 - - 67.0000 - -
Table 5: Frequency distributions of output and input specific technical efficiency estimates of fruit tree
Trput efficiency
Efficiency index (20)  Output efficiency X1 X2 X3 X4 X5 X6
<25 15.000 55.550 67.900 79.010 46.540 74.040 19.750
25-50 11.200 30.860 18.510 12.340 34.930 9.870 14.810
50-75 39.200 9.870 7.400 7.400 6.170 8.620 45.670
75-100 34.600 3.700 6.170 1.230 12.340 7.470 19.750
Mean 71.200 34.400 47.000 38.200 41.500 36.200 59.700
Minimum 27.200 1.000 1.300 0.500 1.200 0.700 1.700
Maximum 100.000 100.000 100.000 100.000 100.000 100.000 100.000
Standarddeviation 0.291 0.174 0.238 0.081 0.208 0.133 0.302
Table 6: Frequency distributions of output and input specific technical efficiency estimates of cereal
Tnput efficiency
Efficiency index (%0)  Output efficiency X1 X2 X3 X4 X5 X6
<25 11.400 20.750 14.140 27.900 33.450 71.040 15.640
25-50 28.000 12.810 59.740 48.610 42.860 20.320 55.930
50-75 30.900 40.670 19.730 17.400 20.770 8.520 18.270
75-100 29.700 28.750 6.370 6.270 2,700 0.120 10.340
Mean 67.200 52.540 67.000 58320 59.060 38.170 68.230
Minimum 16.800 5.130 19.000 0.900 10.010 1.500 5.000
Maximum 100.000 100.000 100.000 100.000 100.000 100.000 100.000
Standarddeviation 0.162 0.210 0.270 0.230 0.240 0.360 0.160
Table 7: Frequency distributions of output and input specific technical efficiency estimates of vegetable farming
Tnput efficiency
Efficiency index (20)  Output efficiency X1 X3 X2 X4 Xs X6
<25 9.400 38210 29.250 27.300 28.040 70.010 22170
25-50 66.200 47.500 50.110 48.300 60.900 14.090 45.130
50-75 20.400 13.190 12.350 23.200 8.060 10.900 27.250
75-100 4.000 1.100 9.290 1.200 2.000 5.100 5.450
Mean 54.700 41.000 44.400 56.200 47.000 36.000 59.700
Minimum 10.700 1.200 1.500 0.700 1.300 0.500 1.700
Maximum 100.000 100.000 100.000 100.000 100.000 100.000 100.000
Standard deviation 0.138 0.208 0.174 0.133 0.238 0.081 0.302
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efficiency of this culture in Tunisian agriculture. However,
cereal and fruit-trees have almost descriptive statistic for
efficiency level. Over than 65% of the farmers have
efficiency level under 75% (inefficiency at 25%). In
summary, these statistics are quite comparable to those
reported by previous frontier studies in agriculture in
developing countries. For example, the overall average
level of technical efficiency computed from all the studies
presented by Thiam is 68%. The parametric studies
relying on the Cobb-Douglas form reported technical
efficiency measures ranging from 52-84%, with an
average of 71%.

Estimates of input-specific technical efficiencies,
obtained from Eq. 20, indicate that land is utilized more
efficiently in the production process followed by labor,
ammal traction, mechanization and fertilizers. Further, all
individual measures of input-specific technical efficiencies
indicate a considerable variation among farms in the
sample which is more intense in other intermediate
inputs and fertilizers. The results are shown in Table 5-7
that irrigation water is a highly significant determinant of
crop vield. The coefficient of irrigation water quantity is
an elasticity measure. Input specific technical efficiency
of irrigated water is under 40% for all crop. Clearly, there
is a substantial scope for improving output even with the
same level of inputs. On the input side, the results
indicate that in using water, farmers operate close to the
frontier of water use and that there is a limited potential to
improve water-specific technical efficiency. The average
technical efficiency for water use was about 36% for
vegetable farming with a minimum under 1, 35.2% for fruit
tree with a minimum under 2-38.17% for cereals. Further
more for all crops >80% of the farmers are at efficiency
level under 50%. The implication is that gains in water
management can be achieved from improved use of water
mn potato production. This result suggests policy
recommendations to make up for this inefficiency.

CONCLUSION

The stochastic varying coefficient model developed
by Kalirajan and Obwona (1994a) have all mteresting
features of a non-neutral frontier model but their
procedure for estimating both the output and the
input-specific technical efficiency measures is not free of
theoretical and methodological problems. Specifically, it
has been shown that the frontier as defined by Kalirajan
and Obwona (1994a) 1s m practice infeasible for any
sample participant and theoretically improper whenever
the maximum response coefficients are not coming from
the same production unit. Consequently by using it to
compute, the maximum attamable output yields misleading
results regarding both the magnitude of technical
efficiency and the ranking of fims according to their

336

efficiency scores. The main reason behind these
problems is Kalirajan and Obwona (1994a)’s assumption
that the best practice methods refer to each nput
separately instead of the whole set of inputs used by a

firm.
RECOMMENDATIONS

In order to overcome these problems, we suggest an

alternative procedure for measuring output and
input-specific technical efficiencies within the stochastic
varying coefficient model. The proposed measures are
respectively analogous to those used by Huang and Liu
(1994) in the maximum likelihood formulation of the
non-neutral frontier model and Kopp (1981)’s defnition of
single-factor efficiency measure. After these adjustments,
the stochastic varying coefficient model may be seen as
a promising alternative to Huang and Liu (1994)

non-neutral frentier model.
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