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Abstract: We consider the problem of detecting and quantifying nonstationary structure in time series from high-
dimensional dynamical systems. This problem is relevant in particular for EEG monitoring, e.g. for the prediction of
epileptic seizures, but also for practical data analysis in many other fields. Three groups of measures of nonstationarity
are discussed: Correlation dimension, measures based on autoregressive modelling and cross-prediction, and measures
based on entropies defined in the spectral or wavelet domains. Results both for simulated and clinical time series are
shown.

1. Introduction

As a part of the current interest in characterisation of complex dynamical behaviour the detection and descrip-
tion of nonstationary dynamics has become an important issue (Havstad & Ehlers (1989), Schreiber (1997),
West et al. (1999), Hegger et al. (2000), Mormann et al. (2003)). Although in some laboratory experiments
it may be possible to observe stationary dynamical states, in observations taken from nature it is usually im-
possible to separate the object of investigation from unpredictable external influences. Even in well-controlled
laboratory experiments unwanted external disturbances may occur which have to be detected by appropriate
tools.
There are also systems which might actually evolve according to a stationary dynamics, but for which the
necessary state space dimension is too high for reliable identification of such dynamics from time series of
reasonable size (and precision); this effect renders them operationally nonstationary.
As a consequence of this, during the analysis of many time series e.g. from medicine, meteorology or economics
one has to consider the possibility of nonstationarity, be it genuine or operational.
In various cases the nonstationarity may even be the main object of interest. As an example we mention
the work of Lehnertz & Elger (1998, see also Mormann et al., 2003) on the prediction of epileptic seizures
from intracranial recordings of the human electroencephalogram (EEG). From estimations of the correlation
dimension d2 based on a moving window they were in several cases able to detect a significant change of brain
dynamics several minutes before a seizure occurred.
Characterisation of nonstationarity may be accomplished by explicitly using nonstationary time series models;
however, within the framework of nonlinear time series analysis, as developed since the early 1980’s in the
nonlinear dynamics community (Kantz & Schreiber, 1997) it is frequently preferred to describe nonstationarity
by monitoring significant changes of characteristic quantities describing the dynamics, such as fractal dimensions
or Lyapunov exponents (Galka, 2000).
In this paper we take a heuristic approach to comparing three approaches for detecting and quantifying non-
stationary structure in three given univariate time series. No prior knowledge about the underlying dynamics
will be assumed, thereby imitating a common situation in practical data analysis.

2. Description of time series

We will employ three time series, two of which are artificially generated in a way such that their (non-)
stationarity properties are precisely known, whereas the third time series represents a clinical recording of
brain activity.
The first two time series are obtained by integrating the well-known Mackey-Glass differential-delay equation
(Mackey & Glass, 1977)

ẋ(t) =
ax(t− τd)

1 + x(t− τd)c
− bx(t) , (1)

where the parameters are chosen as a = 0.2, b = 0.1 and c = 10. In this system the change of the state ẋ(t)
depends not only on the current state x(t), but also on the state a certain delay time τd ago. The larger τd,
the more complex the resulting time series will be, but still the time series remains completely deterministic.
This equation is solved numerically by using the same discretisation technique as used by Ding et al. (1993).
As initial conditions on the interval [0, τd] we choose a constant value of 0.5; but we allow transients in the
numerical solution to die out before we begin to sample actual time series. The integration time is chosen as
tint = 0.1, the sampling time is 20 integration times.
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We create two time series from the Mackey-Glass system, each of a total length of 131072 points:

• Time series A: The delay time is chosen as τd = 65, so that the time series is perfectly stationary.
This value corresponds already to a fairly complex dynamics, which can be described by a correlation
dimension of d2 ≈ 5.3 (Galka, 2000). A typical part of this time series is shown in figure 1.

• Time series B: Now we let τd depend explicitly on (integration) time during the numerical integration
process by a triangle-shaped oscillating function: We start at τd = 10 and increase it slowly at constant
rate, until τd = 120 is reached, then we switch to decreasing the delay time at the same constant rate,
until τd = 10 is reached, where we switch to increasing again, etc. We choose the rate of changing τd such
that precisely four full periods of this triangle-shaped oscillation fit into the 131072 points of the entire
time series. By this method we create a nonstationary time series for which the quantitative evolution of
the nonstationarity is well known in advance. The complexity of the dynamics will be lowest for τd = 10
(where the time series in fact becomes periodic) and highest for τd = 120. A typical part of this time
series is shown in figure 2, from which it can be seen how the periodic dynamics becomes more complex
due to the gradual increase of τd.

As an example of a time series from actual reality we furthermore employ a clinical time series:

• Time series C was recorded by an implanted depth electrode directly from a specific brain region, the
gyrus parahippocampus, of a patient suffering from severe temporo-mesial epilepsy. The data set was
sampled with 183.8 Hz and covers 25 minutes directly prior to an epileptic seizure. According to results
obtained by Lehnertz & Elger (1998) this time series displays a marked change of the dynamics 8 minutes
prior to the seizure. A typical part of this time series, chosen from within the last 8 minutes, is shown in
figure 3. Earlier parts of the series look quite similar, except for a slightly smaller number of spikes.
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Figure 1: Part of time series A (2800 points; total length 131072 points), stationary Mackey-Glass system.
Amplitudes correspond to a 16bit data format. For more details see text.
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Figure 2: Part of time series B (2800 points; total length 131072 points), nonstationary Mackey-Glass system,
chosen briefly after the point of lowest complexity. Amplitudes correspond to a 16bit data format. For more
details see text.
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Figure 3: Part of time series C (3400 points; total length 270000 points), intracranial EEG recording. Ampli-
tudes correspond directly to the output of 12bit A/D conversion. For more details see text.

3. Correlation dimension estimation

As our first approach to quantifying nonstationarity we present correlation dimension estimation on a “moving
window”, as employed by Lehnertz & Elger (1998): A series of segments is extracted from the time series,
where consecutive segments may overlap to some degree, then the correlation dimension is estimated for each
segment, yielding a single value for each segment.
Such moving-window approaches have been criticised, since they may be statistically inefficient and anticipate
quasi-stationarity within each segment, and modelling approaches have been proposed that do not employ
segments (Krystal et al. (1998), Hegger et al. (2000)); however, so far these approaches lack generality, since
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they rely on specific assumptions about the dynamics or the structure of the nonstationarity, such as assuming
that it can be described by a random walk, therefore we prefer to employ the standard moving-window approach.
We shall give only a brief description of correlation dimension estimation here, since this technique is widely
used and well documented elsewhere (see e.g. Kantz & Schreiber (1997), Galka (2000)).
Given a (univariate) time series xi, i = 1, . . . N (which in this case is limited to the data within a given
segment), the corresponding state space is reconstructed by time-delay embedding, which yields a set of vectors
xi = (xi, xi−τ , . . . , xi−(m−1)τ ), where m and τ denote the embedding dimension and the time delay, respectively.
In the case of our Mackey-Glass time series an appropriate value for τ is 3, as determined by the ILD criterion
of Buzug & Pfister (1992); for the EEG time series we obtain τ = 5 by the same criterion. The embedding
dimension m is chosen to range from 2 to 20. For each value of m the correlation sum is calculated:

C(r,m) =
2

(Nv + 1−W )(Nv −W )

Nv∑

i=W+1

Nv−i∑

j=1

H(r − ‖xj − xi+j‖) , (2)

where H(x) = 1 for positive x and H(x) = 0 otherwise. ‖.‖ denotes maximum norm. The bias correction
parameter W (also known as Theiler correction parameter) is chosen as W = 20; its choice is not critical,
provided it is sufficiently large. Then the radius-dependent correlation dimension estimate follows from C(r,m)
by

d2(r,m) =
∂ log C(r,m)

∂ log r
. (3)

A radius-independent estimate (which still depends on m) is obtained by evaluating the slope of log C(log r)
on a suitably chosen radius interval (see Galka (2000) for technical details of the implementation).
Finally one has to study the behaviour of d2(m); if it converges to a constant value for increasing m, this value
is accepted as an estimate of the correlation dimension. But in this application we simply plot the values of
d2(m) as a function of segment number (i.e. time) and omit this final step, thereby obtaining a generalised
measure of complexity even in cases where a proper convergence of d2(m) for increasing m is not found. This
procedure has been found to be useful in EEG analysis, although from the viewpoint of dimension theory so
far no theoretical justification has been established.

4. Segment distances from AR modelling

We shall now present an approach to quantifying nonstationarity, which is based on linear autoregressive (AR)
modelling. Again we divide the time series into segments, then we choose a constant model order p and fit
an AR(p) model to each segment by standard least squares estimation.. Let xik , i = 1, . . . , Ns , denote the
subseries forming segment k, then the corresponding AR(p) model is given by

xik = a0k +
p∑

j=1

ajkx(i−j),k + εi , (4)

where ajk , j = 0, . . . , p , denote the coefficients of the AR(p) model of this segment, and εi denotes a stochastic
noise term. Given a set of segments there is an equal number of models, and in the spirit of previous work
by Hernández et al. (1995) and Schreiber (1997) each of the models can be employed to predict each of the
segments. Using the model from segment k to predict segment l yields a cross-prediction residual variance νkl

defined by

νkl =
1

Ns − p

Ns∑

i=p+1


xil − a0k −

p∑

j=1

ajkx(i−j),l




2

. (5)

Even if the entire time series has been normalised to have zero mean, it is important to include a constant term
a0k for each segment.
We now define a measure of distance between segments k and l by defining

Dkl = log
νkl

νll
. (6)

However, the numbers defined by this equation do not actually represent distances, since they will generally
neither be symmetric, nor define a metric space; nevertheless they are useful for our purpose. We could obtain
a symmetric definition by using (Dkl + Dlk)/2, but we have observed that such symmetrisation step renders
this approach less useful.
The denominator in equation 6 provides a reasonable normalisation; alternatively, Dkl (or more precisely:
Dkl/Ns ) can also be regarded as the difference between two values of the Akaike Information Criterion AIC
(Akaike, 1974), the first corresponding to using the model from segment k for predicting segment l, and the
second being defined in the usual way for segment l. Since AIC becomes minimal for the optimal model (for
given p), we can expect the distances according to equation 6 to be non-negative.
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Figure 4: Correlation dimension estimate versus time using a moving window of 4096 points length for time-
delay reconstructions of time series A (left panel) and time series B (right panel). The time delay is τ = 3,
the embedding dimension ranges from m = 2 to m = 20 (curves in ascending order). The Theiler correction
parameter is W = 20. Time is measured directly by counting sample points (for a sampling time of ts = 20 tint,
where tint = 0.1).
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Figure 5: Segment distances D1j versus time using a moving window of 4096 points length for linear AR models
of order p = 12 (solid lines) and p = 24 (dashed lines) of time series A (left panel) and time series B (right
panel). Time is measured directly by counting sample points.

We remark that a similar measure, as given by equation 6, has been found useful for the comparison between
linear and nonlinear autoregressive models, as part of a parametric approach for testing for nonlinearity (Galka
& Ozaki, 2001).
A test for stationarity then can be based either on the complete matrix Dkl or on just one row of this matrix,
by fixing a reference segment, say the first, and observing the fluctuations of D1l as a function of l.

5. Entropies based on spectral or Wavelet representations

Finally we mention a third class of measures which recently has been proposed for the purpose of characterising
neurophysiological time series (Inouye et al. (1991), Quian Quiroga et al. (1999)). The frequency-domain
representation of a time series xi (in our case the subset forming a segment, xik, but the segment index k is
not needed in this section) through the corresponding set of Fourier coefficients cj , resulting from the Discrete
Fourier Transform, is well known; the distribution of energy across different frequencies can be described by a
distribution

pj =
|cj |2∑
k |ck|2 , j = 1, . . . , Ns/2 . (7)

The properties of this distribution can be described by its Shannon entropy

H = −
∑

j

pj log pj . (8)

Recently the same concept was applied to wavelet representations of time series (Quian Quiroga et al., 1999).
The discrete wavelet transform of a given function f(t) (sampled by xi , i = 1, . . . , Ns) can be expressed as

f(t) =
K∑

j=0

2−jNs∑

k=1

dkj ψ(2−jt− k + 1) +
2−KNs∑

k=1

akK φ(2−Kt− k + 1) , (9)

where ψ(t) denotes the chosen wavelet (in this paper always the “Daubechies 6” wavelet), φ(t) the corresponding
scaling function and K the depth of the decomposition. The first term constitutes a sum of consecutively
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Figure 6: Fourier entropy (upper panels) and wavelet entropy (lower panels) versus time using a moving window
of 2048 points length for time series A (left panels) and time series B (right panels). Time is measured directly
by counting sample points.

extracted details (in terms of a multiscaling decomposition), whereas the second represents the remainder not
explained by these details.
Following a suggestion of Quian Quiroga (1999), the two sets of coefficients dkj , akK can be used for defining
a distribution by forming the average energy per step of the decomposition:

Ej =
1

2−jNs

2−jNs∑

k=1

|dkj |2 , EK+1 =
1

2−KNs

2−KNs∑

k=1

|akK |2 , (10)

which leads to the distribution
pj =

Ej∑K+1
k=1 Ek

. (11)

The weights employed in equation 10 are needed since even for white noise the distribution of energy across
the steps of the decomposition will not be uniform.
Finally the Shannon entropy can be calculated for the pj according to equation 8, and the results can be
compared for various segments.
As for the case of segment distances, for both definitions of entropy, based on Fourier or wavelet decomposi-
tions, it is important to allow for a nonvanishing mean value of each segment, i.e. to include the zero-frequency
component of the spectra into the distributions.

6. Results

In this section we present the results of applying the approaches presented in sections 3, 4 and 5 to the three
time series described in section 2. For brevity, only a qualitative discussion of results will be given. First we
show in figures 4, 5 and 6 the results for the two simulated time series from the Mackey-Glass system (time
series A and B).
It can be seen that correlation dimension performs well in resolving the triangle-shaped nonlinearity pattern
in time series B, whereas for time series A the estimates converge to a roughly constant level across segments
which, however, shows considerable fluctuations. Segment distances from cross-prediction (using model orders
p = 12 and p = 24) are less successful in resolving the triangle-shaped pattern except for segments of low
complexity; but the concept of segment distance yields a very good result for the stationary time series, since
in this case all distances have values close to zero. The comparison of the results for time series A and B is
helpful for assessing this success; in cases where only one time series is available a comparison with surrogate
data sets (Theiler et al., 1992) can help to detect significant nonstationarities. The Fourier and wavelet entropies
show a similar performance as the segment distances, both succeed in discriminating between low and high
complexity, but within the regime of high complexity they provide very little discrimination, as compared to
correlation dimension estimation; the results seem rather to be dominated by fluctuations. For the case of
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Figure 7: Upper left panel: Correlation dimension estimate versus time using a moving window of 5000 points
length for time-delay reconstructions of time series C, using a time delay of τ = 5, embedding dimensions
ranging from m = 2 to m = 20 (curves in ascending order) and a Theiler correction parameter of W = 20.
Upper right panel: Segment distances Dij versus model number i and segment number j using a moving window
of 5000 points length for linear AR models of order p = 16 of time series C. Time is measured by counting
segments; segments have 50 % overlap. Lower panels: Fourier entropy (left panel) and wavelet entropy (right
panel) versus time using a moving window of 8192 points length (with 87.5 % overlap) for time series C. Note
that in the right panel the vertical axis does not start at zero.

stationarity wavelet entropy shows a slightly better performance, since it produces less fluctuations; obviously
the wavelet decomposition is better suited for adapting to the waveforms present in the individual segments at
high complexity.
Next we show in figure 7 the results for time series C. The estimates of correlation dimension reproduce the
results of Lehnertz & Elger (1998); a marked transition from a state of higher dimension towards a state of lower
dimension (which still resides at fairly high values around d2 ≈ 7) can be seen after approximately 17 minutes.
This result is commonly regarded as indicating a significant loss of “neuronal complexity” and henceforth
increased probability of the onset of an epileptic seizure; the dynamics during seizures can be regarded as
possessing low complexity due to the presence of highly synchroneous oscillations.
However, the Fourier and wavelet entropies show that this interpretation may be overly simplified, since here
these measures succeed in detecting the same state transition, but now the second state is found to have
increased spectral complexity. It should also be noted that wavelet entropy rates this time series as essentially
stationary, since the difference of entropy between both states is very small in comparison to absolute values
of entropy (of course, this may be a consequence of a suboptimal implementation; e.g. by careful adaptation of
the basis wavelet to the data a different performance may be obtained).
Finally we note that segment distances essentially fail to detect this state transition at all. In this case we
have chosen to display the full matrix Dij , but the only prominent features it contains are certain individual
segments that have a comparatively large distance to all other segments.

7. Conclusion

In this paper we have investigated the issue of detecting nonstationary structure in high-dimensional time series.
Clearly the immense variety of potential dynamics and nonstationarities which could be present in actual time
series precludes a general solution of this problem. It is for the same reason that time series models containing
explicit nonstationarity will remain of limited use.
The two examples which we have considered, the Mackey-Glass system and the intracranial EEG, are highly
different in various ways, but still correlation dimension estimation seems to provide reasonable results for
both cases. For the regime of high complexity of the underlying dynamics it seems to be a very useful tool;
approaches relying on linear properties, such as segment distances based on linear AR models and entropies
defined on spectral or wavelet distributions, cannot cope well with changes of complexity which do not produce

1170



sizable changes of the spectral content of the signal. Both time series A and B were generated in a way such
that they are high-dimensional almost always.
On the other hand we have seen that the pronounced state transition which seems to be present in the EEG
time series does also produce changes of linear properties, although this series itself is also high-dimensional,
such that the sophisticated (and time-consuming) nonlinear technique of correlation dimension estimation is
not the only way to detect and describe the nonstationary structure.
Obviously the main drawback both of correlation dimension and entropies is the tendency of these quantities
to display considerable fluctuations even for stationary time series, if the dynamics is high-dimensional; this
will easily result in spurious detection of nonstationary structure. This problem can be avoided by the concept
of segment distances. However, the failure of segment distances to detect the state transition in time series C
demonstrates that this technique depends to large extent on the underlying modelling approach. Obviously
plain linear AR modelling is an unsuitable choice for spike-dominated EEG time series. More refined modelling
would probably yield improvements, but the computational time demands would soon become sizable.
Currently we therefore suggest that a test for nonstationarity of a given time series from unknown dynamics
should be performed by a combination of different methods which are sensitive for various properties of the
data; correlation dimension, Fourier entropy and segment distances based on AR modelling may form a first
selection for a useful set of such methods.
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