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On Matching Polynomials of a Simple Hexagonal Lattice
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Abstract: A recurrence relation is derived for the matching polynomial of a 2 x n hexagonal lattice Explicit
formulae are then obtained for the first ten and the final four coefficients.
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INTRODUCTION

The graphs considered here are all fimte and without
loops or multiple edges. By a matching in a graph G, we
mean a spanning subgraph of G whose components are
nodes and edges. We define a defect-d matching to be a
matching with d component nodes, see Berge™? and
Little™ We denocte the number of defect — d matchings
in G by NA(G)A perfect matching is a defect-0
matching. Let G be a graph with p nodes. We associate
the weights wand w, with each node and edge
respectively. With each matching in G, we associate the
monomial w,w," i.e., the product of the weights of the
components. Then the matching polynomial of G 1s
M(G;w, w,)= Zakwlpizszk

k

where ¢, is the number of matchings in G with k edges and
the summation is taken over all values of k.The basic
properties of matching polynomials can be found in
Farrell”. A momomer — dimer covering of a molecule is
equivalent to a matching in a graph.

The importance of monomer-dimer coverings in
statistical mechamcs have been examined by Heilmann
and Lieb®.

The acyclic polynomial which 1s obtamned from the
matching polynomial by puting w, = x and w, = -1 has
been been shown to be a useful tool n mathematical
chemistry, see Gutman™? and Aihara!.

We denote by A, the lattice formed by concatenating two
layers of hexagons.

MATERIALS AND METHODS

M are the essential

The following results given in
methods used to reduce a graph. By applying this
reduction process we can set up recurrences for matching
polynomials of graphs. They are useful in the material

which follows.
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The fundamental reduction process: Let G be a graph
having an edge e. Let G’ be the graph obtained from G by
deleting e and G, the graph obtained from G by removing
the nodes at the ends of e. Then

M(Gw, w,)= M(G’;WLWZ) + w, M(G’”;WLWZ).

The component theorem: If G consists of two components
R and 3, then M(G;w, w,) = M(R;w, w,) M(S;w, w,).

We use generating functions to solve the system of
recurrences that are obtained by using (a) and (b).The
following result (c) is used to find the first three
coefficients.

{c)Let G have p nodes and q edges.Then in M(G;w, w,),
(1)a,=1,a,=q and

(i)a, = {%}

It is easy to find P by choosing two edges at each
node in all different ways 1.e.,

— B, where B is the number of paths of
length 2 m G.

v,
p= i[ IJ , Where v, is the valency of node i in G.
ok 2

The successive coefficients are found by first
obtaining a recurrence for the hexagonal lattice A, .Once
an expression for a coefficient 15 found, we use these
formulae to generate the value of the successive
coefficient.

RESULTS

The matching polynomial of A written as a recurrence:
We apply the reduction process as stated mn result (a)
initially to the graph A, and all reduced graphs that are
shown in Fig. 1.

In so doing the following recurrences are obtained
that are valid forn> 1.
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Lemma 1l

DA, =B, . +wC,

B, =wD,+w,E,.

unC, =wl +w w0, +wwD,_ +w ] _ +w,'C
WG

(1v)D, = w,C, + wow K, + w.'w, A, + w, D, . .

WE, =wlF,+ (sz + WZWIZ)An + W22W1M1-1-
(vi)F,=wpP,+2w,wA +w M, , +w Q.

vi) G, = w I, + (w,w/' +wHK+wwl A, +w wD,_,.
(vii) I, =w,C, + w,R, .

(x) K, = W12 A+ wowM, _ +ww D, + W1W22Rn-1 +
w, K, ..

GOM, = (w,'+ w)R, + wyw,K, + wywP, + w'wA, +
W23M1-1-

(xi) P, = w' A +wwM, , +ww] , +w'wF,  +
W23Pn-1

(xi)Q, =w,C,+w,F,.

xR, = wK, + (wow? + wO, _ +w'w F,_, +
W23W1 P

n

We then use standard techmiques of generating
functions to get the following recurrence in A,.

Theorem 1

A = (w+ 8wow 4+ 17wiw,? + 8w,/ A, | - Bw w5
28w, w," + 84w, 'w,*+ 88w, w,  + 28w, DA, + Gw,'w, T+
32w, w B+ 26w, w b+ 228w, W,  H191w,tw P 56w, AL
. — (wiw? o+ 12w, w, ™+ 6lwtw, + 172w w, +
281w, "w, + 224w, 'w + 70w, A, + Gw,!'w, +
28w,''w,® + 102w,"w,t + 176w, "w,!  +151w,"w)?
+56w,"A, s — (3w, w,+

20w, W t 52w, w, + 56w, w4+ 28w, AL+ (w,
+ 4w, "w, + 0w+ 8w, DA, L - WAL (n= 9.

A Table of coefficients of M(A ;w,w,)forn=1 to
9 is given below. We note that A, is the path on four
nodes.

Theorem 1 is now used to give the number of k-
matchings 1e. the coefficients of matching polynomials.

Number of k-matchings in A ; As mentioned before, the
number of defect — k matchings in G is written as N(G)
and the number of k-matchings 1s o (G) We state the
formulae for o, (A,) for the first three values of k.

Theorem 2
a"U (An) = 1:-
o, (A,)=8n-3, nzx=1
ando, (A )= 32n° —58n+ 29, nz2.

Table 1: Coetficients of matchimg polynomials

CoefTicients of M(A, ; w,,w,) written in increasing powers of w;

1,31

1,11,41,61,31,3

1,19,143,547,1132,1244,661,135,6

1,27,309,1961,7579,18441,2821 8,26354,14086,3817,414,10

1,35,539,4815,27694,107618,288453,534829,677921,571 751,306

251,96534,15742,1038,

15

& 1,43,833,9621,73893,398535,1553872,4442120,9345547,1439853
7.160301 28,12605006,6759506,485317,52357,2276,21

7 1,51,1191,16891,162688,1127448,5810931,22707547,67973178,1
56433962,276262234,371712868,376265551,281123407,1508577
07,55938623,13553613,1971415,149623,4529,28

8 1,59,1613,27137,314687,2669877,17169350,85552126,334853938,
1037589342 2553803425 4990433843, 7711656287,9352803755,8
801483951,6324560617,3395386889,1322124110,358471282,638
50156,6842838,381 543,83 68,36

9 1,67,2099.40871,554594,5573374,43033569,261410761,12689655
11,4972794985,15828788075,41046957489,86738080903,149025
190015,207199626684,231437473113,205577334315.1432557138
73,76929903871,31099715551,9174548032,1893084337,2572724
66,21031001,889793,14577,45

h o ) =D

Proof: A has 6n - 2 nodes. There 15 only one matching
with zero edges ie the empty graph with on - 2
nodes. Therefore(1) follows Now A has n -1 cells. The first
cell has 11 edges and the remaining (n-2) cells each have
8 edges. Thus ¢, =11 + 8(n-2) = 8n -5.

There are 2n + 4 nodes of degree 2 and 4n-6 nodes of
degree 3 m A, By using result (c) above, the expression
follows easily for o, (A,) .

By equating the coefficient of w," in Theorem 2, we
obtain the following result.

Theorem 3: A, hasa k-matching if and only if
0 <k < (3n-1) In this case,

A )= A +8 A +17: A +8 A -
ak( n) ak( n—l) ak—l( n—l) ak-z( n—l) ak-3( n—l)

3a. (A )28a (A )84a (A ) -88a (A )-28a
k-2 n-2 k3" n-2 k-4" n-2 k-5 n-2

(A )+3a (A )+32a_ (A _)+126a_ (A _)+228a
n-2 k4" n-3 k-5 n-3 k-6" n-3 k-7

(A )+1%la, (A _)+56a. (A
n-3 k-8 n-3 k-9 n-3

k-6

- A -12,
) ak-G( 11-4) 2

A -
k—lO( n—4)

A +3a A +28a
( n—4) k-lO( n-S)

k-7

A -172a (A )-281
( AT WA

)-6la_ (A
n-4 k-8° n4

224a (A )-70a
k11" 4

(A )+102a_ (A (A
n-5 k-12° n- k-13" n-

+56a (A )-3a (A )-20a
k-15" n-5 k-14" n-6

A -56a

( 11-6) k-17

A +9 A
( 11-7) ak-ZO( n-

k-12
11762
5

k-11

A
k- 14( n—5)

-52a
)

J+151a
5

(A
k-15" n k-16

A -28a A +a A +1a
( 11-6) k-lS( 11-6) k-lS( 11-7) k-19

(A ) RIEEE)

)+8a -a (A
7 k-21" n-7 k-24" n-

By putting k = 3,4,5,6,7 and 8 respectively in Theorem
3, we use generating functions to obtain the following
result .

21
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Theorem 4:

(DA )-175 + (1154/3m -304n’ + (256/3)°. (n= 2).
(i), A =1079 — (7501/3)n+ (6934/3)n* — (3008/3)n’ +
(512/3)n* (n=3).

(1D A,) = -6755+(242669/15)n - (49022/3 ) n* + 8656 i” -
(7168/3) n + (4096/15°. (n = 3).

(V)e(A) = 42798 —(314279/3)n+ (5038516/45) n’ — 66620
n’+ (208448/9) n* -(13312/3)n* + (16384/45)n° . (n>4)
(VoA =-273818 +(71436107/105)n- (34011836/45) n’?
+ (21830804/45) n* — (1741984/9) n*+ (2150912/45) n® —
(303104/45)n* + (131072/315m". (n=4).

(vi)et(A) =1766126 - (186256835/42 (3190961 899/630)
n° - (154254958/45) n’ + (67447294/45) n'*- (3888512/9) n’ +
(3505264/45)n° - (2718744/315)n"+(131072/315)’. (n= 5)

Defect —d-matchings in A The following result 1s
obtained from Theorem 1 by equating coefficients of the
terms 1in w,*

Theorem 5: A, has a defect — d matching for 0 <d <
(3n—1). In this case,

Ny(A) = No (Ao 8Ny (A )+ 1T Ny A, D+ 8
Na(Anor) -3 Ny oAy ) —

28Ny o(An o) — 84N, (A, _5) - 88Ny, (A, o) - 28N, (A, )
3Ny (A 5) +

32N, o(As ) 126N, (A, 5) + 228N, (A, ) + 191N,
(A _5) + 56Ny (A, 5) —

Ny 2lAn_a) T 12N (A, g - 61N, (A, ) -172N, (A,
1) -281N; (A, _y) —

224N, (A _ ) -TON (A, ) 3Ny (A, ) + 28N, (A, )
+ 102N, (A, 5+

176Ny (A, _5) + 151Ny (A, 5) + 56Ny (A, _5) - 3N, (A,
s) = 20Ny o(A,; o) —

52N, (Mg 6) - 56N, (A, o) - 28N (A, _o) . Ny (A7) +
ANy (A, )+

ONy A +BNGA, ) -Ny(A,_) . (n=9)

Lemma 2
No(A,) = BNu(A, ) - 2B NyA, ;) + 56Ny(A, 5) -
TONG(A, ) + S6N(A, 5 - 28Ny(A, o) + BNy(A, ) -
NolAg 5.

We then use the method of generating functions to
get the following result.

Theorem 6:

n{n+1)

Ni(A,) = (nz1)

22

By putting n =2 in Lemma 2 , we get

Ny(A) = TTNy(A, ) + BN, (A, ) - B8Ny(A, ) - 28Ny(A, ;)
+ 191N (A, ) H56N,(A, ) — 224N(A, ) - TONJ(A, )+
ISING(A, . 5) + SENL(A, 5) - SENy(A, ) - 28NL(A, o) +
ONy(A, 7)) +8NAA, ) - Ny(A, ). (n=9).

We use Theorem 6 to substitute the values of
No(A, Jfork =12, 8toget

NL(AL = 8NLA, 1) - Z8NLA, 5) +56NA, 5) — TONLA, )
+56NL(A, 5) - Z8NJA, o) + 8N(A, 7) - N(A, o). (nz9).

We solve by the method of generating functions to
get the following result.

Theorem 7

NL(A ) =-216+(5452/1 5)n—(89867/360)n* H22459/240n’
—(337/1%)n* + (49/20)n° -

(53/360n° + (1/240m" . (n=2).

This procedure is repeated in turn for the values
n =4 and 6.In so doing we obtain the following result
which gives the number of defect-4 and defect-6
matchings.

Theorem §8:

(1N(A,)=-935+(25826501/13860)n - (4985567/31 50)n’ +
( 687729285/907200)n° -(1181435/5184)n* +
(16022679/34560)n’ - (1009057/172800)n" +

(99797/151200)0 — (979/24192)° + (467/145152)n° —
(67/518400)n™ +(1/316800)n". (n = 2).

(GDNLA,) 28168 (4479316873/90000)n  +
(1821886442977/50450400)n? (3615817719847
/25945920000 + (134323583/44550)n"- (39042403529
/119750400)n° +(12460517/21772800)n° + (426586513
/87091200)n" (23504843/38102400m°  +
(1608391/21772800)0° (139/43200)n'  +(40153/
95800320)n'" — (269/29937600)n' + (2071/3113510400)n"?
—(17/87178291 2)n* + (1/1779148800)n'"*. (n> 2).

DISCUSSION

This article has paved the way for further research in
lattice type graphs.Tt is possible to get results on other
coefficients but the calculations are tediousIt 1s
interesting to note that all thirteen graphs mentioned in
the Fig. 2 have the same recurrence for their matching
polynomials.It is not simple to get a recurrence for the
general lattice with m rows of hexagons with each row
having n hexagons.
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