Asian Journal of Information Technology 5 (1) : 69-74, 2006

© Medwell Online, 2006

Task Scheduling in Distributed Systems Using a Mathematical Approach

Shatha K. Jawad
Department of Computer Engineering, Al-Balga’ University, Jordan

Abstract: The designed distributed control system consists of autonomous CPUs that work together to make
the complete system look like a single computer. So, the microkernel design using two levels of scheduling, the
first one for commumnication and the other for task execution. Level two is proposed by using three routines,
Guarantee, Bidder, and Decision Routines. The proposed mathematical approach can be used to implement the

latter algorithm.

Key words: Operating systems, distributed systems, system dynamics, Real-time simulation

INTRODUCTION

Distributed systems consist of autonomous CPUs
that work together to make the complete system look like
a single computer’™. They have a number of potential
selling pomts, including good prices/ performance ratio,
well ability to match distributed applications, potentially
high reliability and incremental growth as the workload
grows™ Distributed Operating System is one class of
software for multiple CPUs that turns the entire collection
of the hardware and software into a single mtegrated
system. Given a collection of CPUs, some algorithms are
needed for assigmng CPUs. Such algorithms can be
centralized or distributed, local or global and sender-
initiated or receiver-initiated®®.

Distributed operating systems have to be designed
carefully, since there are many pitfalls for the unwary"!. A
key 1ssue is transparency-hiding all the distribution from
the users and even from the application programs. In this
respect, microkernels are superior to monolithic kernels.
The main objective of this work 1s to find new methods in
some services of the microkernel (exactly process
allocation and scheduling) to obtain better performance.

Real-time scheduling: Real-time systems are
frequently programmed as a collection of short tasks, each
with a well-defined function and a well-bounded execution
time™¥. The response to a given stimulus may require
multiple tasks to be run, generally with constraints on
their execution order. In addition, a decision has to be
made about which tasks to be run on each processor™".

The microkernel, proposed in this worl, consists of
three algorithms which cooperate together to implement
the CPU tiume scheduling at each PC 1n the system, these
are: Guarantee Algorithm, Bidder Algorithm and Decision-
maker algorithm (Fig. 1).The next sections will described
these algorithms.

60

Builts STT using LCM for
all periodic tasks

v

Enter the characteristic of the new task

Y

Foward the C\Cs of new
task to all PCs.

e
Rums bidder alogrithm and return
their state to the original PC.
Recieve variable which deseribe the
state of other PCs,
L]

Runs decision alogrithm to select the
best offer that received from other PC.

Local

Fig. 1: Forwarding of arrived new task alogrithm

Guarantee routine: Check the possibility of acceptance of
the new task by a local PC or must be migrate to another
PC.To provide this algorithm , each PC maintains a System
Task Table (STT) for all local periodic or aperiodic tasks
guaranteed at any point in time.

Asian J. Inform. Tech., 5 (1) : 69-74, 2006

In other words, the table which contains the time slot
of any task and any additional information about any one
of them (e.g. arrival time, execution time, etc.) known as
STT. The STT can be built by using a dynamic priority
assignment to implementing the EDF (Earlier Deadline
First) rule. This STT 1s constructed along the least
common multiple of the periods of all periodic tasks.
Tasks in the STT are arranged in the order of their arriving
times and, within each arrival time by their deadlines.

Each element mthe STT list 1s a data structure called
TASK SLOT, that memorizes the processor sharing
among the tasks. Bach TASK SLOT 1s described as a Slice
Time (End Time — Start Time) assigned to a task
characterized by Arrival Time, Execution Time and
Deadline. The time between two tasks represents
Available Time (AT), 1.e. the time in which the processor
is not busy. In other words, the STT list is constructed by
simulating the processor behavior n advance. New Task
is a data structure that contains the characteristic of the
new aperiodic task and characterized by Arrival time,
Execution time, and Deadline of this new task.

The two-guarantee routine methods are similar in idea
but different in the procedure of calculating the Available
Time. As described before, the Available Time 1s used to
execute the new aperiodic task.

Slotted task guarantee routine algorithm: Tt is assumed
that the tasks are preemptive, so the Execution Time of the
new task can be divided into slots. The number of slots
and their size depends on the AT between any adjacent
tasks with deadline less than the deadline of new task in
STT and the Execution time of the new task. The steps of
this algorithm are described as follows:

s Search Start Task in SST list, 1.e. the time of TASK
SLOT that end before the amving of the new task
arrival and in the same time built a new list that will
contain all tasks n SST list and the new task if it s
accepte

+ Search for Available Time (Inter Task Time) in the
SST list, the intervals between tasks, 1.e. time when
the processor 1s idle. The search 1s completed when
the sum of these intervals is equal to the execution
time of the new task or when the deadline (New Task.
deadline) is missed. The latter condition is tested by
computing End of New Task as a sum of Inter Tasks
Time and Tasks with deadlines less than that of the
New Task. The tasks with deadlines greater than that
of the new task are saved in another list of delayed
tasks, let us call it Delayed Tasks List, which are
arranged in order according to their deadlines.

* Check if tasks that are delayed by the new task are
still schedulable.

70

Non-slotted task guarantee routine algorithm: It is
supposed that the tasks are non-preemptive, so the new
task execution time can not be divided into slots. The
following steps describe how this guarantee routine
works:

* Ags described in first step of the previous method.

» Searching the STT list for the first task with deadline
greater than that of new task. At the same time
accumulate the available time and the execution tune
of all tasks between Start Task and the first task with
deadline greater than that of new task. The search is
stopped at any time the accumulater time is more
than the deadline of the new task

+ Inserts the new task in SST list before the first task
with deadline greater than that of new task and add
the execution time of the new task to the accumulated
time calculated in step 2. If the new adding times go
over the deadline then stop and conclude that the
new task can not be guaranteed by this PC.

¢ Checks if tasks that are delayed by the new task
(tasks, which have deadlines greater than that of new
task) are still schedulable.

The dispatcher is the module that gives control of the
CPU to the task selected from STT. Although the
dispatcher should be as fast as possible, its time that is
required to stop one task and starts another must be taken
in to consideration. So, it is required to include the
dispatcher’s execution time within every task computation
time (execution time). As a result, the conclusion is to use
slotted task guarantee routine method, with increasing the
execution time of the new task by a factor N, where N is
define as follows:

N = time needed for each dispatcher = slot’s number of
new task

For worst case, the number of slots 1s equal to the
execution time of new task. The time needed by dispatcher
15 an extra time added to the execution time of the new
task that to be solved using the 2nd method (non-slotted
task guarantee routine).

The new task is either periodic or aperiodic and must
be examined for schedulability soon after it arrives. To
facilitate this, both the bidder and the local scheduler
tasks are executed as periodic tasks. The period and
computation times of these tasks are determined a priori
by the nature of tasks.

The above scheme is based on the assumption that
there 1s a communication module, executed on a processor
separate from the CPU on which tasks are scheduled. Thus
1s responsible for receiving information from local
workeells” devices as well as from other PCs. Based on the

Asian J. Inform. Tech., 5 (1) : 69-74, 2006

type of communication, this module stores the received
mformation in an appropriate data structure so that they
will be looked at when different tasks are executed.

BIDDER ALGORITHM

When the new task, which 1s received by a local PC,
can not be scheduled locally its characteristic is
broadcasted to all PC’s.Then each PC (except the local
one) runs a bidder algorithm. This algorithm is used to
determine incomplete information about the state of each
PC running it. Each PC has two bidder algorithms one for
periodic and other for aperiodic task.

Bidder algorithm for aperiodic tasks: A bidder algorithm
starts to run when 1t 13 inspired by a Request For Bid
signal (RFB). The local PC broadcasts this signal. The
algorithm should return (to the origin PC) the degree to
which the PC can guarantee the task.

[11,12] that
evaluate the available time interval between the arrival of
a RFB and the task deadline. They took into account all

delays encountered during the process of bidding and the

[12,13)

Some authors implemented schemes

percentage of periodic tasks. Others implemented
schemes that periodically broadcast the PC state,
measured as accumulated computational time or total
number of tasks on that PC. These schemes consider only
aperiodic tasks. The proposed idea for these schemes 1s
that 1t 1s better to make an estimation of the state quicker

4 In our

than to make measurement with overhead!
approach, searching the STT within the interval between
the arrival time and the deadline for new aperiodic task
only and look for parameters that can influence the
schedulability of the new task. The analysis is done in
cooperation with the guarantee routine and EDF rule.
that the

schedulability of a task the following assumption are

Among the parameters can influence

considered:

Available Time (AT) : Is the time between the arrival time
and the deadline of the new task when the processor 1s
dle.

TD: Accumulated execution times of already guaranteed
Tasks that have to be Delayed as a result of accepting the
new task.

ND: The Number of already guaranteed tasks that will be
Delayed by the new task.

Note: TD and ND assumed to be as Scheduling Cost.

71

The bidder algorithm performs only an approximation
of the above parameters and sends them to the mitiator of
RFB (local PC). If any PC in the system can not accept the
new task no message will be returned. Because the
proposal has two methods of guarantee routine, then two
types of bidder algorithms are required. The difference
between the two algorithms is: with slotted task guarantee
routine method the related Bidder algorithm of any PC
retums a message that describes the uncompleted states
if the summation of the idle slots time are enough to
execute the new task within its deadline. On the other
hand and when using non-slotted guarantee routine
method, the related bidder algorithm does not care about
the pervious described case.

Bidder algorithm for periodic tasks: This algorithm 1s
similar to the bidder algorithm of aperiodic tasks except
the parameters that can influence the schedulability of the
task which are, number of periodic tasks and number of
aperiodic tasks.

To ensure that no PC accept any new task (periodic
or aperiodic) until the local PC takes its decision, is to
malke each PC accept any new taslk after a fixed interval of
time if it is not receive any message from the local PC.

The local PC waits for a fixed interval of time
(estimated interval) for bids to come from all PC’s. The
local PC receives the bids and makes a decision to select
the best bid among all bids within the waited interval time
and neglects those bids that are armived after that time.

DECISION MAKING ALGORITHM

The decision-making algorithm runs on the initiator
of RFB (local PC) and uses information supplied by bidder
algorithm from some PCs found in the system. The
questions that should be answered by the decision-maker
are: 1) Having received the bidding parameters from each
PC, 2) Which 1s the best PC to send the task to? It is not
easy to give a complete answer, but could find partial
ones. For example, for aperiodic task, a large available time
that verifies the relation available time > execution time of
the new task can guarantee the new task. However, it
does not contain any information about the delayed tasks.
In the same way, a small scheduling cost offers good
chances to guarantee the delayed tasks. To handle this
qualitative information about the parameters delivered by
the PCs and their capacities to guarantee the new tasl,
this next section will be based on Fuzzy Sets theory,

Asian J. Inform. Tech., 5 (1) : 69-74, 2006

Neuro Fuzzy algorithm to introduce a mathematical
approach that can be used to choose the best offer.

THE MATHEMATICAL APPROACH

While trying to use a neural net in implementing the
decision algorithm an idea to put a threshold for each
layer in their neurons, as those found in the transmission
scheduling, was raised. Then another idea was
introduced, if the conditions for thresholds are found then
why not use it directly without neural net? So the
implementation of these ideas was started and the
begimming point was to find the conditions to make the
correct selection, n the way a mathematical approach was
mtroduced to make the required decision without needing
to fuzzy, neurofuzzy, genetic or neural.

For the mathematical approach for aperiodic new

task:
¢+ Find maximum Available Time (AT) from all offers as
follows:
Max. AT = max (AT,,..., AT,)
Where:

n= numbers of PCs which offer bids.

¢ Find maximum Scheduling Cost (5C) from all offers as
follows:
Max. SC = max (3C,,..., SC_)

+ TFind a new value for each SC, let it be called

Complement Offer (CO), as follows:

CO=Max. 3C- SC,

Where: 1=0,1,... .n-1
¢ Find maximum Complement Offer from all offers as

follows:

Max. CO =max (CO,,...,CO,)
* Find the best anticipation offer (B):
B=Max. AT + Max. CO

* Find the competing number (CN) for each offered PC

as follows:

CN;, = AT, + CQ,

¢ The selected PC, is a node with CN, closest to B.

For the mathematical approach for periodic new task:

* Find mimmum periodic number (PT) from all offers:
Min. PT = Mm (PT,, PT,.)

¢ Find minimum aperiodic number (AP) from all offers:
Min. APT = Mimn (APT,,..., APT,,)

» Find the Competing Number (CN) for each offered PC:
CN, = PT, + APT,

» Find the best anticipation offer (B):
B=Min. PT + Min. APT

s The selected PC, is a node with CN, closest to B.
COMPARISON WITH OTHER METHODS

There are some points, which can be deduced from
the results that was obtained by runmng the same
simulated systems using fuzzy, neuro-fuzzy™?
mathematical approach to make the decision algorithm,
should be taken m consideration. The mathematical
approach has the followmg specification:

and

s Ttneeds little and simple calculation to find the better
offer received from PCs.

s Ttis faster in finding its selection than the fuzzy and
neurofuzzy approaches.

¢ Tt needs no temporary stored data that is necessary
in caleulation to find the best offer as in the case of
neurofuzzy systems.

» In the mathematical approach, there 1s a high
possibility to have more than one best offers (equals
to CN). The choice here refers to system designer. If
he thinks that there 1s no difference between the
number of periodic and aperiodic tasks then any of
the above systems can be selected. Otherwise, and
when he prefer a system with lowest number of PTs
or lowest number of APTs then a condition can be
add to select the required characteristic in a very easy
way and after detecting the first equal best offer.

» The experience of the designer and the flexibility to
choose some parameter can be added to the fuzzy
and neurofuzzy facilities when needed to implement
the decision algorithm, while the mathematical
approach 1s a mathematical solution only and the
final decision are not affected by the conditions
above.

PERFORMANCE EVALUATION

After running a twenty different case of systems for
each methods used to implement the decision algorithm
(Fuzzy with different number of rules, Functional
Neurofuzzy, Structural Neurofuzzy and the Mathematical

Asian J. Inform. Tech., 5 (1) : 69-74, 2006

100%
° EO%
E 0%
40%
g 20%
0% 4 T T T
Y B e Mo, 2 36
(a). Aperiodic new task with SC equal to
1 times of delayed task
120%
E 80%
60%
20%
%
{b). Aperlodlc new task with 8C equal to
2 number of delayed task
120%
1004
g 5%
a 0%
£ A%
E e H H
% T T T T
9 16 25 36
Rules No.

(c). Periodic new task.

Fig. 2: Performance of fuzzy decision algorithm with
different number of rules

100%

g §0%
£ 50%
;i 40%

20%

0%

Decizion Algerithm

{a). Aperiodic new task with SC equal to times of

{1) delayed task
120%%
100%
BO%
E se%
G o | |
-9
2%
L T, T T
F SNF NF
Decision Algoriam
{b). Aperiodic new task with SC equal to times of
(2) number of delayed task
141
e
0
L
e F ’ SNF ’ FNF
Declslon Algorhhm

{c). Periodic new task.

Fig. 3: Decision algorithm perfomance with diifferent
approaches

73

120%
100%
80%
0%
40%

B 20%
0% 4

F ’ NEW
Dexision Algorithm
(2). Aperiodic new task
12056
1005
0%
0%
4

200

F " NEW
Dexision Algorithm
{b). Periodic new task.
Fig. 4: Performance of mathematical approach and fuzzy
decision alogrithm

approach), the final results 1s obtained as shown mn Fig.
2,3,and 4.

The results represented by performance of the
decision algorithm are related to the percentage of the
better choice accuracy.

REFERNCES

1. Anderew, 3.T., 1995. Distributed operating systems.
Prentice Hall.

2. Abraham, S. and B.G. Peter, 1 998. Operating systems
concept. Addison-Wesley Publishing Company.

3. James, EG. and T.R. Phillip, 2000. Local area
networks. John Weley and Sons, Inc.

4. TJean- Dominique, 1993, A survey on industrial
communication network. ANN. Telecommunication,
48: 9-10.

5. Jawad, SK., 2001. A proposed microkemel algorithm
for fieldbus distributed operating system. Ph.D.
Dissertation, Control and Computer Engineering
Department, University of Technology, Iraq.

6. Jawad, SK., A Al-Thamer, SM. Al-Karaawy and
M.A.J. Al-Baker, 2001. Dynamic tasks scheduling in
fieldbus Systems. I. Eng. Technol., pp: 20-28.

7. Krnthuvasan, R., A.S. JThon and Wei Zhao, 1989.
Distributed scheduling of tasks with deadlines and
resource requirements. TEEE Transactions on
computers, pp: 38-8.

8. George, F.C. and D. Jean, 1988. Distributed systems
concept and design Addison-Wesley published
company.

10.

11.

Asian J. Inform. Tech., 5 (1) : 69-74, 2006

John, A.S. ,1989. Decentralized decision making for
task reallocation in a hard real-time system. TEEE
Transaction on computers, pp: 38-43.

Marin, L., C.L. Traian and L. Jesus, 1998. Dynamic
task scheduling in distributed real-time systems
using fuzzy rules. Microprocessors
Microsystems, 21: 299-311.

John, A.S., R. Krithivasan and C. Shengchang, 1985
Evaluation of flexible task scheduling algorithm for
distributed hard real-time systems, TEEE Transactions
on computer, pp: 34-12.

and

74

12.

13.

14.

Krithivasan, R. and A.S. Thon, 1984. Dynamic task
scheduling in hard real-time distributed systems.
[EEE Software, pp: 65-75.

Keang, G. S. and Y.I. Clueh Chang. 1989. Load sharing
in distributed real-time systems with state-change
broadecasts. TEEE Transactions on computers.
Cherkassk, V. and F. Mulier, 1998. Learning from
data. Wiley- Inter science Population.

