Me/dWe]l

Online

© Medwell Online, 2006

Asian Journal of Information Technology 5 (10): 1044-1049, 2006

Software Implementation of Wireless Modem Using RS232

Ankur Singh and Jasvir Singh
Department of Electronics Technology,
Guru Nanak Dev University, Amritsar, Punjab, India

Abstract: The word modem today’s world is synonymous with communication. Tt is a signal converter that
mediates the communication between a computer and the telephone network. It 1s an essential component of
every network mstallation. The modem 1s entirely dependent upon telephone lines for communication. Busy
telephone lines and line faults always pose a problem for a computer professional. Also the limited bandwidth
of telephene lines limits the maximum rate of transmission of data that can be attained by modem. So in order

to overcome the constraints of conventional modem, there comes a new concept called as wireless modem
which transmits and receives data m the RF band thus eliminating the need of telephone lines totally with much
improved bandwidth. The present study deals with software implementation of wireless modem using

RS232 cable.

Key words: Software, wireless modem, bandwidth

INTRODUCTION

The wireless modem 1s a peripheral device that 1s
connected to the computer for transmission/reception of
data. A wireless modem is a modem that is connected to
wireless networl instead of telephone system. A wireless
modem can use different modulation techniques for
transferrmg the information signal (data). The various
modulating techniques that can be used for transferring
the data ard'¥:

* Frequency Shift Keying (FSK)

* Phase Shift Keying (PSK)

+« Amplitude Shift Keying (ASK)

* Quadrature Amplitude Modulation (QANM)

Each modulation technique has its own properties
and advantages. Depending upon the modulation
technique, a wireless modem can have different speed and
frequency range. The FSK based wireless operates at
speeds comparable to dial up modems, not anywhere near
the speed of broadband internet connections. But a
wireless modem 1s still a better option than a dial up
modem!™ .

This study will demonstrate how the wireless modem
is interfaced with the computer so that data can be
transmitted/received by computer at user end via wireless
modem. In this study we will make a program to control
the flow of data from computer to wireless modem. In this
program we will modify the registers of UART to set

properties baud rate, parameter count etc. to transmit data
in a controlled manner.

The Fig.1 shows the overview of the interface of
wireless modem with computer.

The hardware part of power supply, transmitter and
receiver part of the wireless modem has been designed
and developed™.

The major components used for programming the
interface are: R5232 and UART. In this we will initially
discuss the RS232 cable, serial ports and registers of
UART. After that it will be shown that how to program the
interfacing of wireless modem with the computer.

RS232 cable: The RS232 is an asynchronous serial
commurications protocol, widely used on computers.
Asynchronous means 1t doesn't have any separate
synchronizing clock signal, so it has to synchronize itself
to the incoming data-it does this by the use of 'START'
and 'STOP' pulses. The signal itself 1s shightly unusual for
computers, as rather than the normal 0V to 5V range, it
usest12V to -12V - this is done to improve reliability and
greatly increases the available range it can work over. The
EIA (Electronics Industry Association) standard specifies
a maxunum open-circuit voltage of 25 volts; signal levels
of £5 V, 210V, £12V and £15 V are all commonly seen
depending on the power supplies available within a
device.

Serial Ports come 1n two sizes. There are the D-Type
25 pin connector and the D-Type 9 pin connector both of
which are male on the back of the PC, thus you will require

Corresponding Author: Ankur Singh, Department of Electronics Technology, Guri Nanak Dev University, Amritsar, Punjab, India
1044

Asian J. Inform. Tech., 5 (10): 1044-1049, 2006

Wireless modem

Transmitter Receiver

RS8232

Computer

Fig. 1: Block diagram of mterfacing of wireless modem
with computer via RS232 cable

1 2 3 4 5

7 1
O (e) O
— U J—

6 7 8 9
Pin Signal Pin Signal
1 Data carrier detect 6 Data set ready
2 Received data 7 Request to send
3 Transmitted data 8 Clear to gend
4 Data terminal ready 9 Ring indicator
3 Sigmal ground

Fig. .2: Pin out diagram of Ri3232

a female connector on your device. In this study we will
use 9 pin RS232 comnector. Fig.2 shows the pin out
diagram.

RS232 RS-232
asynchronous. That is a clock signal is not sent with the

waveform: communication is
data. Each word 1s synchromzed using it's start bit and an
mternal clock on each side, keeps tabs on the timing.

The diagram above shows the expected waveform
from the UART when using the common 8N1 format. 8N1
signifies eight Data bits, No Parity and 1 Stop Bit. The RS-
232 line, when idle is in the Mark State (Logic 1). A
transmission starts with a start bit which is (Logic 0).
Then each bit 1s sent down the line, one at a time. The
LSB (Least Significant Bit) 1s sent first. A Stop Bit
(Logic 1) is then appended to the signal to make up the
transmission.

Lagic 1

+5V
Logicosmﬂ|0|1|2|3|4|5|6|7|5tvp|ﬂ

Fig. 3: TTL/CMOS serial logic waveform

Mark
-10v
Space Swn|o|1|2|3|4|5|6|7|Stop+1ov

Fig. 4: R3-232 logic waveform

Fig. 3 shows the next bit after the Stop Bit to be Logic
0. This must mean another word is following and this is its
Start Bit. If there is no more data coming then the receive
line will stay m its idle state (logic 1). We have
encountered something called a Brealk Signal. This is
when the data line is held in a Logic O state for a time long
enough to send an entire word. Therefore if you don't put
the line back mto an idle state, then the receiving end will
interpret this as a break signal.

The data sent using this method, is said to be framed.
That 1s the data 1s framed between a Start and Stop Bit.
Should the Stop Bit be received as Logic 0, then a framing
error will occur. This 18 common, when both sides are
communicating at different speeds.

Fig. 4 1s only relevant for the signal immediately at
the UART. RS5-232 logic levels uses +3 to +25 volts to
signify a Space (Logic 0) and -3 to -25 volts for a Mark
(logic 1). Any voltage in between these regions (ie
between +3 and -3 Volts) is undefined. Therefore, this
signal 1s put through a RS-232 Level Converter. Thus 1s the
signal present on the RS-232 Port of your computer,
shown below.

The above waveform applies to the Transmit and
Receive lines on the RS-232 port. These lines carry serial
data, hence the name Serial Port. There are other lines on
the RS-232 port which, in essence are Parallel lines. These
lines (RTS, CTS,DCD, DSR, DTR, RTS and RI) are also at
RS-232 Logic Levels. Almost all digital devices which we
use require either TTL or CMOS logic levels. Therefore
the first step to connecting a device to the R3-232 port is
to transform the RS-232 levels back into 0 and 5 Volts.
This 1s done by RS-232 Level Converters. Two common
RS-232 Level Converters are the 1 488 RS-232 Driver and
the 1489 R3-232 Receiver.

UART (Universal Asynchronize Receiver/Transmitter)
REGISTERS: The UART is anRS2321/O chip. The UART
converts the parallel data coming from CPU into serial
form to make it compatible to RS232 cable. Similarly, 1t
converts the serial data coming from RS232 cable mto
parallel form to make it compatible to the computer. In this
study, we are to set the registers of UART to set the

1045

Asian J. Inform. Tech., 5 (10): 1044-1049, 2006

Table 1: The registers used in the present study is given below:

Base Register

address DILAB Read/Write Abr. name

+0 =0 Write - Transmitter holding buffer
=0 Read - Receiver buffer
=1 ReadWrite - Divisor latch low byte

+1 =0 Read/Write IER Interrupt enable register
=1 Read/Write - Divisor latch high byte

+2 - Read IR Interrupt Identificationregister

- Write FCR FIFQ control register
+3 - ReadWrite T.CR Line control register
+4 - ReadWrite MCR Modem control register
+35 - Read L8R Line status register
+6 - Read MSR Modem status register
+7 - Read/Write - Scratch register

properties like baud rate, parity etc. A Table 1 of UART
registers.

When DLAB is set to '0' or '1' some of the registers
change. This 1s how the UART i1s able to have 12 registers
(including the scratch register) through only 8 port
addresses. DLAB stands for Divisor Latch Access Bit.
When DLAB 1s set to ']’ via the line control register, two
registers become available from which you can set your
speed of communications measured in bits per second.
The UART 1s fitted with a Programmable Baud Rate
Generator which is controlled by these two registers. Lets
say for example we only wanted to communicate at 2400
BPS. We worked out that we would have to divide 115,200
by 48 to get a workable 2400 Hertz Clock. The Divisor, in
this study 48, is stored in the two registers controlled by
the Divisor Latch Access Bit. This divisor can be any
number which can be stored in 16 bits (ie 0 to 65535). The
UART only has a 8 bit data bus, thus this is where the
two registers are used. The first register (Base +0) when
DLAB = 1 stores the Divisor latch low byte where as the
second register (base +1 when DLAB =1) stores the
Divisor latch high byte.

Table 2 is some more common speeds and their
divisor latch high bytes and low bytes. Note that all the
divisors are shown in Hexadecimal.

The UART has a 8-bit data bus. An 8-bit data when
stored in a TJART register will make various changes
corresponding value of each bit which 13 either “1” or “0°.
The various functions of the UART registers, used in the
interfacing, depending upon state of bits are:

Table 2:The commonly used baudrate divisors

Speed Divisor Divisor latch Divisorlatch
(BPS) (Dec) high byte low byte
50 2304 0%h 00h
300 34 0lh 80h
600 192 00h Coh
2400 48 00h 30h
4800 24 00h 18h
9600 12 00h 0Ch
19200 6 00h 06h
38400 3 00h 03h
57600 2 00h 02h
115200 1 00h 01h

Interrupt Identification Register (ITR):

Bit MNotes
Bits 6 and 7 Bit6 Bit 7

0 0 No FIFO

0 1 FIFQ Enabled but unusable

1 1 FIFO Enabled
Bit 5 &1 Byte Fifo Enabled (16750 only)
Bit4 Reserved
Bit 3 0 Reserved on 8250, 16450

1 16550 Time-out Interrupt Pending
Bits 1 and 2 Bit2 Bit1

0 0 Modem status interrapt.

0 1 Transmitter holding register empty
Interrupt

1 0 Received data available interrupt

1 1 Receiver line status interript
Bit 0 0 Interrupt pending

1 No interrupt pending

First In / First Out Control Register (FCR):

Bit Notes
Bits 6 and 7 Bit 7 Bit 6 Tntermpt trigger level
0 0 1 Byte
0 1 4 Bytes
1 0 8 Bytes
1 1 14 Bytes
Bit 5 Enable 64 Byte FIFQ (16750 onty)
Bit4 Reserved
Bit 3 DMA mode select. Change status
of RXRDY and TXRDY
pins from mode 1 to mode 2.
Bit 2 Clear transmit FIFO
Bit1 Clear receive FIFO
Bit 0 Enable FIFO's

Modem Control Register (MCR):

Bit Notes

Bit 7 Reserved

Bit6 Reserved

Bit 5 Autoflow control enabled (16750
only)

Bit4 Loop back mode

Bit 3 A output 2

Bit 2 Aux output 1

Bit 1 Force request to send

Bit 0 Force data terminal ready

Line Control Register (LCR):

Bit 7 1 Divisor latch access bit
0 Access to receiver buffer,

transmitter bufter and
Interrupt enable register

Bit 6 Set break enable

Bits 3, 4 and 5 it 5 it4d Bit3 Parity select

0 No parity

1 Odd parity

1

1

1

Even parity
High parity (Sticky)
Low parity (Sticky)
Bit 2 Length of stop Bit
0 One stop bit
2 Stop bits for words of length
6, 7 or 8 bits or 1.5 stop bits
for word lengths of 5 bits.

—_— oo
— o= S

—

Bits 0 and 1 Bitl Bit0 Word length
0 0 5 Bits
0 1 6 Bits
1 0 7 Bits
1 1 8 Bits

1046

Asian J. Inform. Tech., 5 (10): 1044-1049, 2006

PROGRAM DEVELOPMENT

In the process of program development, first of all we
will locate the base “address”™ of the Port /O so that we
can communicate with the UART chip directly. For a
typical PC system the following are standard port
addresses (Table 3).

While programming there are two methods available
to us. In first method, the TTART can be polled to see if
any new data is available. In second method, we can set
up an interrupt handler to remove data from UART when
it generates an interrupt. Polling the TUART is a lot slower
method, which is very CPU intensive thus can only have
a maximum speed of around 34.8 KBPS before you start
losing data. The other option is interrupt handler that will
easily support 115.2 KBPS, even on low end computers.
In this study we will discuss only interrupt handler
method. In polling method medifications only to the
registers of the UART are required to aclieve the
desirable settings for communication. In interrupt driven
method, in addition to modifications to UART s registers
we are also required to change the settings of PIC
(Programmable Interrupt Controller). For using interrupts
we must know the TRQ of the communication port. Once
we know the TRQ the next step is to find it's interrupt
vector or software mterrupt as some people may call it.
Basically any 8086 processor has a set of 256 interrupt
vectors numbered O to 255, Each of these vectors contains
a 4 byte code which 13 an address of the Interrupt Service
Routine (ISR). Fortunately C being a lugh level language,
takes care of the addresses for us. All we have to know is
the actual interrupt vector. The interrupt vectors for serial
ports are given in the Table 4 only the interrupts which
are associated with TRQ's.

The other 240 are of no interest to us when
programming RS-232 type communications. For example
if we were using COMI1 which has a TRQ of 4, then the
mterrupt vector would be 0C i hex. Using C we would set
up the vector using the predefined function n C, that 1s
setvect(0x0C void
parameter of function would lead us to a set of

wnterrupt(*1sr)()); where second
mstructions which would service the interrupt. Hence the

Table 3: The standard port addresses

Name Address IRQ
COM1 3F8 4
COM 2 2F8 3
COM 3 3E8 4
COM 4 2E8 3

Table 4: The intermipt vectors (Hardware onby)

INT (Hex) IRQ Common uses
0B 3 Serial Comms. COM2/COM4
oc 4 Rerial Comms. COM1/COM3
Turn off intarrapt gensration
of UART
Save old imterrupt vector for
ﬁi_nmmptmm [
Se ling oonirol reg et io poT DLAR

[wae |

Specify No. of bits, parity and No.
of stop bits ing line control regi

Activate the FIFQ control register
=
St fhe modem confrol regisier of e
EE |
Set the PIC to enable TRQ4

S
)

| Set the modem cantrol register of the UART |

Set the Pic o enable IRQ4
Set intemrupt enable register a0 that UART interrupts whea I

second parameter is our interrupt handler called an
Interrupt Service Routine. Anything can be put in this
service routine.

Flowchart for interrupt driven communication program
for the wireless modem: In1 the above flowchart, we have
modified the UART registers and also set the PIC. Data
from the computer is send using RS232 cable is sent bits
string to the IC 75189 (Level converter of wireless modem)
using the program developed. The output of RS232 cable
15 checked using CRO. A shifting voltage level was
observed as per the requirement. The listing of the
computer program 1s shown in Appendix A.

CONCLUSION

A flowchart for mterfacing pe with the transmitter
section of wireless modem using 3232 cable was
developed. The software program was developed by
modifying the UART s registers. The software developed
during the present was tested by sending data from the pe
and receiving at the end of rs232 cable. A shift in voltage
level was obtained.

1047

Asian J. Inform. Tech., 5 (10): 1044-1049, 2006

Appendix A

Listing of computer program:
#include <dos.h>

#include <stdio.h>

#include <conio.h>

fdefine PORT1 O0x3F8 /* Port Address Goes Here */
#define INTVECT 0x0C /* Com Port's IRQ here (Must also change PIC setting) */

/* Defines Serial Ports Base Address */

/* COMI 0x3F8 */
/% COM?2 0x2F8 */
/* COM3 0x3ES8 */
/% COMA4 0x2E8 */

i1t bufferin = 0;
it bufferout = 0,
char ch;
char buffer[1025];
void interrupt (*oldportl isr)();
void interrupt PORTIINT() /* Interrupt Service Routine (ISR) for PORT1 */
{
mt ¢;
do { ¢ = inportb(PORT1 + 5),
if (¢ and 1) {buffer[bufferm] = mportb(PORT1);
bufferint+;
if (bufferin == 1024) {bufferin = 0;}}
twhile (c and 1);
outportb(0x20,0x20);
$
void main(void)
{
mt ¢;
outportb(PORTI1 + 1, 0); /* Turn off interrupts - Port] */

oldportlisr = getvect(INTVECT); /* Save old Interrupt Vector of later
recovery */

setvect(INTVECT, PORTIINT), /* Set Interrupt Vector Entry */

/* COMI - 0x0C */

/* COM2 - O0x0B */

/* COMS3 - 0x0C */

/* COMA4 - 0x0B */
/* PORT 1 Settings */

outportb(PORT1 + 3, 0xB0), /* SET DLAB ON */
outportb(PORT1 + 0, 0x0C), /* Set Baud rate - Divisor Latch Low Byte */
/* Default 0x03 = 38,400 BPS */
/* 0x01 = 115,200 BPS */
/* 0x02 = 57,600 BPS */
/* 0x06 = 19,200 BPS */
/* 0x0C = 9,600 BPS*/
/* 0x18 = 4,800 BPS */
/* 0x30= 2,400 BPS */
outportb (PORT1 + 1, 0x00); /* Set Baud rate - Divisor Latch High Byte */

1048

Asian J. Inform. Tech., 5 (10): 1044-1049, 2006

outportb (PORT1 + 3, 0x03), /* 8 Bits, No Parity, 1 Stop Bit */
outportb (PORT1 + 2, 0xC7);, /* FIFO Control Register */
outportb(PORTI + 4, 0x0B), /* Turn on DTR, RTS and OUT2 */

outportb(0x21,(inportb(0x21) and OXxEF)); /* Set Programmable Interrupt Controller */

/* COMI (IRQ4) - OxEF */

/* COM2 (TRQ3) - 0xF7 */

/* COMS3 (IRQ4) - OxEF */

/* COM4 (TRQ3) - 0xF7 */
outportb(PORT1 + 1, 0x01), /* Interrupt when data received */
printf("\nSample Comm's Program. Press ESC to quit \n");
do {

if (bufferin = bufferout){ch = butter|butferout];
bufferout++;
if (bufferout == 1024) {bufferout = 0;}
printf("%ec" ch);}
if (kbhit()) {c = getch();
outportb(PORT1, ¢);}
+ while (¢ =27,
outportb(PORT1 +1,0), /* Tumn off mterrupts - Portl */
outportb(0x21,(inportb(0x21) | 0x10)), /* MASK TRQ using PIC */

M COMI (IRQ4) - 0x10 */

/* COM2 (TRQ3) - 0x08 */

/* COM3 (IRQ4) - 0x10 */

/* COM4 (TRQ3) - 0x08 */

setvect(INTVECT, oldportlisr); /* Restore old interrupt vector */
H

REFRENCES 4. Rappaport, T.S., 1996. Wireless commumnication
principle and practices, Upper saddle river, NT, TJSA.
5. Anlkur Singh, 2006. Data transmission wireless
modem for information connectivity (presented) at

1. Peter Davis, 1990. Wireless local area network
technologies, megrawhill Publication

2. Andrew 3. Tanenbaum, 2001. Computer networle,
PHI India LTD. national level technical symposium, DAV institute of

3. http://standertsieee.org engineering and technology, Jalandher.

1049

