nline

o

VY Asian Journal of Information Technology 5 (10): 1095-1103, 2006

© Medwell Online, 2006

L.oad Balancing in Grid Computing

Belabbas Yagoubi, Hadj Tayeb Lilia and Halima Si Moussa
Department of Computer Science, University of Oran, Algeria

Abstract: Grid computing has recently emerged as popular platforms for deploying large-scale and resource-
mtensive applications. This kind of infrastructure raises challenging 1ssues i1 many areas of computer science
and especially m the area of distributed computing. One motivation of Grid computing 1s to aggregate the power
of widely distributed resources and provide non-trivial services to users. To achieve this goal, large
collaborative efforts are currently underway to provide the necessary software infrastructure. Resource
management is an essential function provided at the service level of this software infrastructure. To improve
the global throughput of these environments, workloads have to be evenly balanced among the available
resources. Several load balancing strategies and algorithms have been proposed in this area. Most of them were
developed in mind, assuming homogeneous set of sites linked with homogeneous and fast networks. However
for computational grids we must address main new issues, like: heterogeneity, autonomy, dynamicity and so
forth. This paper deals with a survey for grid load balancing problem. First, the essential aspects of load
balancing system are overviewed to provide a global image of the load balancing process. Then specificities
and challenges for grid are discussed and compared to traditional distributed systems. Finally, the state of the

art of current research and some popular algorithms are outlined.

Key words: Distributed systems, grid computing, load balancing, workload

INTRODUCTION

The current computational power demands and
constraints of organizations have led to a new type of
computing called Grid
Computing™. A computational grid is an emerging
computing mfrastructure that enables effective access to
high performance computing resources. End users and

collaborative environment

applications see this environment as a big virtual
computing system. The systems connected together by
a grid might be distributed globally, running on multiple
hardware platforms, under different operating systems
organizations. While
simultaneous resource allocations can be done manually
with privileged accesses to the
environments need certain resource management strategy
and tools that can provide security and coordination of

and owned by different

resources, such

the resource allocations.

There are many potential advantages to usmng grid
architectures, mcluding the ability to simulate applications
whose computational requirements exceed local resources
and the reduction of job tumaround time through
workload balancing across multiple computing facilities!™.

Resource management and load balancing are key
grid services, where issues of local balancing represent
for most grid infrastructure

da Ccommon concermn

developers™*. In fact, it would be inaccurate to say that
the computing power of any system
proportionally with the number of resources involved.
Care should be taken so that some resources do not
become overloaded and some others stay idle™.

iricreases

To improve the global throughput of grids software,
computation requests have to be evenly balanced among
the available resources. An important issue of such
systems 1s the efficient assignment of tasks and utilization
of resources, commonly referred to as load balancing
problem and known to be NP complete!™. It is essential to
evenly distribute the workload among the available
resources. In other words, it is desirable to prevent, if
possible, the condition where one resource is overloaded
with a large set of tasks to be serviced while another is
lightly loaded or even idle. The main goal of this study is
to highlight current research on load balancing problem
for grid computing.

GENERAL LOAD BALANCING PROBLEM

Overview: A typical distributed system will have a number
of resources working independently with each other.
Some of them are linked by communication channel and
while some are not. Each resource possesses an initial
load, which represents an amount of work to be performed

Corresponding Author: Belabbas Yagoubi, Department of Computer Science, University of Oran, Algeria

1095

Asian J. Inform. Tech., 5 (10): 1095-1103, 2006

and each may have a different processing capacity. To
minimize the time needed to perform all tasks, the
workload has to be evenly distributed over all resources
based on their processing speed. This 13 why load
balancing 13 needed. The load balancing problem 1s
closely related to scheduling and resource allocation. It is
concerned by all techmques or methods allowmg an
evenly distribution of the workload among the available
resources in a systemU™.

In any practical distributed systems, the channels are
of fimte bandwidth and the processing umts may be
physically distant, Therefore, load balancing is also a
decision making process of whether to allow tasks
migration or not. The essential objective of a load
balancing consists primarily to optimize the average
response time of applications, which often mean to
maintain the workload proportionally equivalent on the
whole resources of a system. Load balancing 1s usually
described in the literature', as either load balancing or
load sharing. These terms are often used interchangeably,
but can also attract quite distinet definitions.

Load sharing: This 1s the coarsest form of load
distribution. Load may only be placed on idle resources
and can be viewed as bmary, where a resource 1s either
idle or busy.

Load balancing: Where load sharing 1s the coarsest
form of load distribution, load balancing is the finest.
Load balancing attempts to ensure that the workload on
each resource is within a small degree, or balance
criterion, of the workload present on every other resource
1 the system.

Load levelling: Load levelling introduces a third term to
describe the middle ground between the two extremes of
load sharing and load balancing. Rather than trying to
obtain a strictly even distribution of load across all
resources, or simply utilising idle resources, load levelling
seeks to avold congestion on any one resource.

Another issue related to load balancing is that a
computing job may not arbitrarily divisible leading to
certain constraints in dividing tasks. Each job consists of
several tasks and each of those tasks can have different
execution tiumes. Also, the load on each resource as well
as on the networl can vary from time to time based on the
workload brought about by the users. The resource
capacity may be different from each other in architecture,
operation system, CPU speed, memory size and available
disk space. The load balancing problem also needs to

consider fault-tolerance and fault-recovery. With all these
factors taken inte account, load balancing can be
generalized into four basic steps™

» Monitoring resource load and state;

» Exchanging load and state nformation between
resources (sites, nodes);

* Calculating the new work distribution;

+ Actual data movement.

The problem of load balancing across a network of
available resources has been discussed in distributed
systems literature for more than two decades. Various
load distribution algorithms
implemented and classified mn various studies

have been proposed,
[5.6]

Policies and mechanisms: There are two basic 1ssues
the design of load balancing system!”. The policy issue
15 the set of choices that are made to balance the load
(which tasks should be executed remotely and where).
The mechanism issue carries out the physical facilities to
be used for task remote execution and provides any
information required by the policies. The division of
policy and mechanism can be continued, breaking any
load balancing scheme into a set of distinct but
interdependent components.

Figurel illustrates a suitable decomposition with
each leaf representing a distinct component of a load
distribution scheme. The emphasis 13 on the components
of the policy and the provision of mformation to the
policy. The following list briefly explains each component
identified by a leaf of the tree.

Candidate selection policy: The candidate policy selects
the tasks to be distributed. This can be for reasons
ranging from insufficient service on the current resource,
to the reduction of communication paths.

Load metric mechanism: The load metric is the
representation used to describe the load on a resource.
This determines the type of information that makes a

Load Balancing
Policy Mechanism
Participartion Selection Transfer Load
Location Candidate Metric Communication

Fig. 1: The components of load balancing system

1096

Asian J. Inform. Tech., 5 (10): 1095-1103, 2006

load index (queue CPUJ length, memory size) and the way
such information i1s commumcated to other loaders
(broadcasting, focused addressing, polling).

Load communication mechanism: Load commumnication
defines the method by which information, such as the
load on a resource, 1s communicated between the resource
and the load distribution policies/mechamsms. The load
communication policy can also include the communication
between cooperating distributed policies.

Transfer mechanism: The transfer mechanism is the
physical medium for transferring tasks between resources.
Thus leaf can be further expanded to include branches for
initial placement and process migration.

Although the leaves in the tree structure are distinct,
the individual components are not independent. The
choice of load metric for example, affects the location
selection and possibly the candidate selection as well. Tf
this structure were used to construct a load balancing
mechanism bottom up, by selecting components and
joining them together, or to identify and then replace a
single component, care must be taken to ensure that each
part of the system is capable of providing the
functionality required by the rest of the system. As an
example, consider the mismatch m a system where a
candidate selection policy required migration to reduce
communication paths, but was provided with initial
placement as the transfer mechanism.

TAXONOMY OF LOAD BALANCING POLICIES

There has been an extensive research in the
development of the appropriate load balancing policy.
Approaches of scheduling (load balancing) presented in
the literature are so numerous that it is practically
impossible to cover each one of them in all its details. The
problem description knew a proliferation of the
terminologies, sometimes even contradictory, making
difficult the qualitative analysis of the various methods
suggested. Thus, 1t had become necessary to have a
taxonomy which makes it possible to standardize the
terminologies for a better description of these approaches
and their comparison. In'"", Casavant et al propose a
largely adopted taxonomy, because very complete, for
scheduling and load balancing algorithms in general-
purpose parallel and distributed computing systems.

The organization of the different load balancing
schemes is shown in Fig. 2. From the top to the bottom,
this structure can be identified as what follows.

Static versus dynamic: Static load balancing, also known
as determimstic distribution, assigns a given job to a fixed
resource. Every time the system is restarted, the same

N
Samtic . ,Dhynamic

Reassignment " Centralized Distributed

/N N\ iignin
One-Time . Dynamic Local , Global /"
Ad /\ Sender Receiver

e Non-.]

Cooperative Non-Cooperative

Fig. 2: Hierarchical taxonomy for load balancing policies

binding task resource (allocation of a task to the same
resource) 1s used without considering changes that may
occur during the system's lifetime. Moreover, static load
balancing may also characterize the strategy used at
runtime, in the sense that it may not result in the same
task resource assignment, but assigns the newly arrived
jobs in a sequential or fixed fashion. For example, using a
simple static strategy, jobs can be assigned to resources
in a round-robin fashion so that each resource executes
approximately the same number of tasks.

In this mode, every task comprising the application 1s
assigned once to a resource. Thus, the placement of an
application 1s static and a firm estimate of the cost of the
computation can be made m advance of the actual
execution. One of the major benefits of the static model is
that it is easier to implement.

Dynamic load balancing takes into account that the
system parameters may not be known beforehand and
therefore using a fixed or static scheme will eventually
produce poor results. A dynamic strategy is usually
executed several times and may reassign a previously
scheduled task to a new resource based on the current
dynamics of the system environment.

This model 1s usually applied when 1t 1s difficult to
estimate the costs of applications are coming online
dynamically. It has two major components!?: system state
estimation (other than cost estimation in static case) and
decision making. System state estimation involves
collecting state information throughout the system and
constructing an estimate. On the basis of the estimate,
decisions are made to assign a task to a selected resource.
Since the cost for an assignment is not available, a natural
way to keep the whole system health is balancing the
loads of all resources. The advantage of dynamic load
balancing over static 1s that the system need not be
aware of the rm-time behaviour of the application
before execution.

Distributed vs. centralized: In dynamic load balancing,
the responsibility for making global decisions may lie with
one centralized location, or be shared by multiple
distributed locations. The centralized strategy has the

1097

Asian J. Inform. Tech., 5 (10): 1095-1103, 2006

advantage of ease of implementation, but suffers from the
lack of scalability, fault tolerance and the possibility of
becoming a performance bottleneck.

In distributed load balancing, the state mformation 1s
distributed among the nodes that are responsible in
managing their own resources or allocating tasks residing
in their queues to other nodes. Tn some cases, the scheme
allows 1dle resources to assign tasks to themselves at
runtime by accessing a shared global queue. Note that
failures oceurring at a particular node will remaimn localized
and may not affect the global operation of the system.

Another scheme that fits between the two types
above is the hierarchical one where selected nodes are
responsible for providing tasks to a group of nodes. The
nodes are arranged in a tree and the selected nodes are
roots of the sub tree domains.

A property of this algorithm is that it uses a smart
search strategy to find partner nodes to which tasks can
migrate. Tt also overlaps this decision making process with
the actual execution of ready jobs, thereby saving
precious resource cycles.

Local vs. global: Local and global load balancing fall
under the distributed scheme since a centralized scheme
should always act globally. In a local load balancing, each
resource polls other resources m its neighbourhood and
uses this local information to decide upon a load transfer.
This local neighbourhood 1s usually denoted as the
migration space. The primary objective is to minimize
remote communication as well as efficiently balance the
load on the resources. However, in a global balancing
scheme, global mformation of all or part of the system 1s
used to initiate the load balancing. This scheme requires
a considerable amount of information to be exchanged in
the system which may affect its scalability.

Cooperative vs. Non-cooperative: If a distributed load
balancing mode is adopted, the next issue that should be
considered 15 whether the nodes mvolved m job
balancing are working cooperatively or independently
(non-cooperatively). In the non-cooperative case,
individual loaders act alone as autonomous entities
and arrive at decisions regarding their own optimum
objects independent of the effects of the decision on
the rest of system.

Adaptive vs. Non adaptive: Adaptive and non-adaptive
schemes are part of the dynamic load-balancing policies.
In an adaptive scheme, scheduled decisions take mto
consideration past and current system performance and
are affected by previous decisions or changes in the
environment. If one (or more parameters) does not
correlate to the program performance, it is weighted less

next time. In the non-adaptive scheme, parameters used in
balancing remain the same regardless of system's past
behaviour. An example would be a policy that always
weighs its inputs the same regardless of the history of the
system behaviour.

Confusion may arise between in distinguishing
dynamic balancing and adaptive balancing. Whereas a
dynamic solution takes environmental inputs into account
when making its decision, an adaptive selution (which is
also dynamic) takes environmental stimuli mto account to
modify the lead balancing policy itselff'.

One-time assignment vs dynamic reassignment: In this
classification, the entities to be balanced are considered.
The one-time assignment of a task may be dynamically
done but once 1t 18 scheduled to a given Resource, it can
never be migrated to another one?. On the other hand, in
the dynamic reassignment process, jobs can migrate
from one node to another even after the initial placement
is made. A negative aspect of this scheme is that tasks
may endlessly ciwculate about the system without
making much progress.

Sender/receiver/symmetrically initiated balancing:
Techniques of balancing tasks in distributed systems
have been divided mainly as sender-initiated,
receiver-iitiated and symmetrically-initiated"?. In
sender-initiated models, the overloaded nodes transfer
one or more of their tasks to more under-loaded nodes. In
receiver-initiated schemes, under-loaded nodes request
tasks to be sent to them from nodes with higher loads. In
symmetric approach, both the under-loaded as well as the
loaded nodes can initiate load transfers.

LOAD BALANCING IN GRID COMPUTING

A Computational Grid is a hardware and software
infrastructure that provides dependable, consistent,
pervasive and inexpensive access to ligh-end
computational capabilities'?. It is a shared environment
implemented via the deployment of a persistent,
standards-based service infrastructure that supports the
creation of and resource sharing within, distributed
communities. Resources can be computers, storage space,
instruments, software applications and data, all connected
through the Internet and a middleware software layer that
provides basic services for security, monitormg, resource
management and so forth. Resources owned by various
administrative organizations are shared under locally
defined policies that specify what is shared, who 1s
allowed to access what and under what conditions. The
real and specific problem that underlies the Grid concept
15 coordmated resource sharing and problem solving

in dynamic, mult-institutional virtual organizations!.

1098

Asian J. Inform. Tech., 5 (10): 1095-1103, 2006

The grid load balancing process: A Grid is a system of
high diversity, which is rendered by various applications,
middleware components and resources. In'™, Schoft
generalize a load balancing process mn the Grid into three
stages: information collection, resource selection and

tasks mapping.

Information collection: Information Collection 1s the basis
for providing current state information of the resources.
It should be performed during the whole course of
system running. A load balancing system can either
construct its own information collection mfrastructure,
or employ existing information service systems, enabled
by middleware’s. It 13 desired that the overhead
introduced by the process of information collection is
as small as possible.

Resource selection: In principle, resource selection 1s
performed in two steps. In the first step, the initial filtering
15 done with the goal of identifying a lList of authorized
resources that is available to a given application.
Possibly, the imtial list of authorized resources can be
further refined by filtering according to the coarse-grained
application requirements, such as hardware platform,
operating system, minimum memory and disk space.

In the second step, those resources are aggregated
into small collections such that each collection is expected
to provide performance desired by the given application.
The number of ways that the resources could be
aggregated would be extremely large when the number of
feasible resource is large. To over-come the complexity,
different heuristics may be introduced.

Tasks mapping: The third phase involves mapping the
given set of tasks onto a set of aggregated resources
mcluding both the computational resources and network
resources. This 1s a well-know NP-complete problem and
various heuristics may be used to reach a near-optimal
solution. The effort of mapping in conjunction of resource
selection produces a set of candidate submissions. Once
the set of candidate submissions is ready, the balancer
starts to select the best submission subject to the
performance goal, based on mechanisms provided by the
performance model.

CHALLENGES OF LOAD BALANCING
IN GRID COMPUTING

Load balancing systems for traditional distributed
environments do not work in Grid environments because
the two classes of environments are radically distinct.
Load balancing m Grid environments 1s sigmficantly
complicated by the unique characteristics of Grids.

Traditional lead balancing models generally
produce poor Grid balancing in practice. The reason can
be found by going through the assumptions underlying

traditional systerns!™:

» All resources reside within a single admmistrative
domain.

¢+ To provide a single system image, the balancer
controls all of the resources.

¢ The resource pool is invariant.

+ Contention caused by incoming applications can be
managed by the balancer according to some policies,
s0 that its impact on the performance that the site can
provide to each application can be well predicted.

» Computations and their data reside n the same site or
data staging 1s a highly predictable process, usually
from a predetermined source to a predetermined
destination, which can be viewed as a constant
overhead.

Unfortunately, all these assumptions do not hold in
Grid circumstances. In Grid computing, many unique
characteristics make the design of load balancing
algorithms more challenging’, as explained in what
follows.

Resource heterogeneity: A computational Grid mainly
has two categories
computational resources. Heterogeneity exists in both of
the two categories of resources. First, networks used to
interconnect these computational resources may differ
significantly in of their bandwidth and
commurication protocols. A wide-area Grid may have to
utilize the best-effort services provided by the Internet.
Second, computational usually
heterogeneous in that these resources may have different
hardware, such as instruction set, computer architectures,

of resources: networks and

terms

resources are

number of resource, physical memory size, CPU speed and
so on and also different software, such as different
operating systems, file systems, cluster management
software and so on. The heterogeneity results in differing
capability of processing jobs. Resources with different
capacity could not be considered uniformly. An adequate
load balancing system should address the heterogeneity
and further leverage different computing power of diverse
resources.

Site autonomy: Typically a Grid may comprise multiple
administrative domains. Each domain shares a common
security and management policy. Each domaimn usually
authorizes a group of users to use the resources in the

1099

Asian J. Inform. Tech., 5 (10): 1095-1103, 2006

domain. Thus applications from non authorized users
should not be eligible to run on the resources in some
specific domains. Further more, a site is an autonomous
computational entity. A shared site will result mn many
problems. Tt usually has its own scheduling policy, which
complicates the prediction of a job on the site. A single
overall Performance goal is not feasible for a Grid system
since each site has its own performance goal and
scheduling decision is made independently of other sites
according to its own performance goal.

Local priority is another important issue. Each site
within the Grid has its own scheduling policy. Certain
classes of jobs have higher pricrity only on certain
specific resources. For example, 1t can be expected that
local jobs will be assigned higher priorities such that local
jobs will be better served on the local resources.

Most traditional load balancers are designed with the
assumption of having complete control of the underlymg
resources. Under this assumption, the load balancer has
adequate information of resources and therefore effective
load balancing is much easier to obtain. But in Grid
enviromments, the Grid load balancer has only limited
control over the resources. Site autonomy greatly
complicates the design of effective Grid load balancing.

Resource non-dedication: Because of non dedication of
resources, resource usage confention is a major issue.
Competition may exist n both computational resources
and interconnection networks. Due to the non dedication
of resources, a resource may jomn multiple Grids
simultaneously. The workloads from both local users and
other Grids share the resource concurrently. The
underlying interconnection networl is shared as well. One
consequence of contention is that behaviour and
performance can vary over time. For example, in wide area
networks using the Internet Protocol suite, network
characteristics such as latency and bandwidth may be
varymg over time. Under such an environment, designing
an accurate performance model is extremely difficult.

Contention 1s addressed by assessing the fraction of
available resources dynamically and wusing this
mformation to predict the fraction available at the time of
application to be scheduled.

Application diversity: The problem arises because the
Grid applications are from a wide range of users, each
having its own special requirements. For example, some
applications may require sequential execution, some
applications may consist of a set of independent jobs and
others may consist of a set of dependent jobs. In this
context, building a general-purpose load balancing system
seems extremely difficult. An adequate load balancing
system should be able to handle a variety of applications.

Dynamic behaviour: Tn traditional distributed computing
environments, such as a cluster, the pool of resources 1s
assumed to be fixed or stable. In a Grid environment,
dynamics exists in both the networks and computational
resources. First, a network shared by many parities cannot
provide guaranteed bandwidth. This 15 particularly true
when wide-area networks such as the Internet are
involved. Second, both the availability and capability of
computational resources will exhibit dynamic behaviour.
On one hand new resources may join the Grid and on the
other hand, some resources may become unavailable due
do problems such as network failure. The capability of
resources may vary overtime due to the contention among
many parties who share the resources. An adequate load
balancing should adapt to such dynamic behaviour. After
a new resource joms the Grid, the load balancing should
be able to detect it automatically and leverage the new
resource in the later balancing decision making. When a
computational tesource becomes unavailable resulting
from an unexceptional failure, mechamsms, such as
checkpointing or rebalancing, should be taken to
guarantee the reliability of Grid systems.

Resource selection and computation-data separation: In
traditional systems, executable codes of applications and
input/output data are usually n the same site, or the input
sources and output destinations are determined before
the application 1s submitted. Thus the cost for data
staging can be neglected or the cost is a constant
determined before execution and load balancing
algorithms need not consider it. But in a Grid which
consists of a large number of heterogeneous computing
sites (from supercomputers to desktops) and storage sites
connected via wide area networks, the computation sites
of an application are selected by the Grid load balancer
according to resource status and certain performance
models. Additionally, in a Grid, the communication
bandwidth of the underlying network 1s limited and shared
by a host of background loads, so the inter domain
communication cost cammot be neglected. Further, many
Grid applications are data intensive, so the data staging
cost 18 considerable. This situation brings about the
computation data separation problem: the advantage
brought by selecting a computational resource that can
provide low computational cost may be neutralized by its
high access cost to the storage site.

These challenges pose significant obstacles on the
problem of designing an efficient and effective load
balancing system for Grid environments. Some problems
resulting from the above are not solved successfully yet
and still open research issues. As a result, new load
balancing frame work must be developed for Grids, which
should reflect the unique characteristics of Grid systems.

1100

Asian J. Inform. Tech., 5 (10): 1095-1103, 2006

LOAD BALANCING ALGORITHMS IN GRID
COMPUTING

It 18 well known that the complexity of a general load
balancing problem is NP-Complete. As mentioned the load
balancing problem becomes more challenging because of
some unique characteristics belonging to Grid computing.
To date, there have been a number of exciting iutial
efforts at developing load balancing systems for Grid
environments. [t 1s often difficult to make comparisons
between distinct efforts because each load balancing is
usually developed for a particular system environment or
particular greedy application, with different assumptions
and constraints. We attempt to outline the methodologies
adopted and ideas behind popular load balancing system.

Adaptive load balancing algorithms™: Tn computational
grids, applications need to smmultaneously tap the
computational power of multiple, dynamically available
sites. The crux of desigming load balancing grid
environments stems exactly from the dynamic availability
of compute cycles: grid programming environments need
to be both portable to run on as many sites as possible
and they need to be flexible to cope with different network
protocols and dynamically changing groups of
heterogeneous compute nodes. In others words, an
adaptive solution to the load balancing problem is one in
which the algorithms and parameters used to make load
balancing decisions change dynamically according to the
previous, current and/or future resource status™. The
demand for load balancing adaptation comes from three
points: the heterogeneity of candidate resources, the
dynamism of resource performance and the diversity of
applications. We can find three kinds of adaptation.

Resource adaptation: Because of resource heterogeneity
and application diversity, discovering available resources
and selecting an application appropriate subset of those
resources are very important to achieve high performance
or reduce the cost. " show how the selection of a data
storage site affects the network transmission delay™,
propose a resource selection algorithm in which available
resources are grouped first into disjoint subsets
according to the network delays between the subsets.
Then, inside each subset, resources are ranked according
to their memory size and computational power. Finally, an
appropriately sized resource group is selected from the
sorted lists. The upper bound for this exhaustive search
procedure is given and claimed acceptable in the
computational Grid circumstance.

Dynamic performance adaptation: The adaptation to the
dynamic performance of resources is mainly exhibited as:

» Changing load balancing policies”] (switching

between static load balancing algorithms which use
predicted resource information and dynamic ones
which balance the static load balancing results),

» Workload distributing according to application
specific performance models and finding a proper
number of resources to be used®!.

Applications to which these adaptive strategies are
applied usually adopt some kind of divide-and-conquer
approach to solve a certain problem™.

Application adaptation: Aggarwall et al. " consider that
applications in Grid computing often meet, namely,
resource reservation and develop a generalized Grid load
balancing algorithm that can efficiently assign jobs
having arbitrary inter-dependency constramts and
arbitrary processing durations to resources having prior
reservations. Their algorithm also takes into account
arbitrary delays in transfer of data from the parent tasks
to the child tasks. In™, Wu et al give an algorithm
adaptive to indivisible single sequential jobs, jobs that
can be partitoned into independent parallel tasks and
jobs that have a set of mdivisible tasks. When prediction
error of the system utilization is reaching a threshold,
the scheduler will try to reallocate tasks.

GENETIC ALGORITHMS

The classic approach 1s to use algorithms, which try
to solve the load balancing problem by analyzing the
current state of the system. This way has some
disadvantages like the need of medium or large computing
power and due to this problem the scalability 1s poor on
larger systems.

To avoid this drawback, others approaches were
proposed. One of these has been introduced analogies
from natural phenomena to form powerful heuristics,
which have proven to be highly successful. Some of the
common characteristics of Nature’s heuristics are the
close resemblance to a phenomenon existing in nature,
namely, non-determimism, the mmplicit presence of a
parallel structure and adaptability™*!. We can find three
basic heuristics implied by Nature for Grid scheduling,
namely, Genetic Algorithm (GA), Simulated Annealing
(SA) and Tabu Search (TS).

For its simplicity, GA 1s the most popular Nature’s
heuristic used 1n algorithms for optunization problems.

GA is an evolutionary technique for large space
search. The general procedure of GA search is as follows:

Population generation: A population 15 a set of
chromosomes and each represents a possible solution,
which 1s a mapping sequence between tasks and
machines.

1101

Asian J. Inform. Tech., 5 (10): 1095-1103, 2006

Chromosome evaluation: Each chromosome is associated
with a fitness value, which is the malkespan of the
task-machine mapping this chromosome represents. The
goal of GA search 1s to find the chromosome with optimal
fitness value.

Crossover and mutation operation: Crossover operation
selects a random pair of chromosomes and chooses a
random point in the first chromosome. For the sections of
both chromosomes from that point to the end of each
chromosome, crossover exchanges machine assignments
between corresponding tasks. Mutation randomly selects
a chromosome, then randomly selects a task within the
chromosome and randomly reassigns it to a new machine.

Finally, the clromosomes from this modified
population are evaluated agamn. This completes one
iteration of the GA. The GA stops when a predefined
number of evolutions is reached or all chromosomes
converge to the same mapping.

COGNITIVE ALGORITHMS

The other approach 1s the one, which try to estimate,
some how, the future system state in order to propose a
more stable solution®. This seems to be the future in this
domain because the classical approach can drive to
dramatic increase of commumnication mto the computer
network. In another words the achieved Speed up 1s very
low or worst. This is happening due to the workstation
user comportment, which can decide to change his
computing needs at any moment. For this reason remote
tasks are unacceptably delayed so from the gemtor pomt
of view those can be considered as dead and must be
computed locally or sent to other low charged station in
the net.

One way of estimating the workstations load 1s by
using a statistical approach such as load functions
resulted from repeated measurements. These functions
often have a Gaussian aspect, like many other models of
natural processes. But these methods ignore, as we
previous mentioned, the very cause of the load of a
workstation, which is the behavior of the individual user.
In the last decades, the progress in cogmtive science,
especially in cognitive psychology, made possible for the
development of behavioral models that can estimate, to a
higher or lower degree of precision, the way an individual
may act under certain circumstances. While no one can
challenge the immense variety of the human nature, it 1s
evident that people tend to act rationally in controlled
environments and therefore their behavior is not totally
random. This assumption leads to an attempt to discover
some general rules that may determine (or at least

approximate) the conduct of a person in simple, repeating
situations. The combined effect of these rules represents

the behavior of the mdividual.
CONCLUSION

The goal of this survey is to discuses issues and
methods deployed in load balancing systems for Grid
environments. Although load balancing in parallel and
distributed systems has been intensively studied, new
challenges in Grid environments still make it an interesting
topic and many research projects are underway. Through
our survey on current load balancing algorithms working
in the Grid computing, we can claim that load balancing
for traditional systems cannot be applied to the Grid
environments. On one hand, the Grid environments exhibit
heterogeneous and dynamic characteristics, which
distributed system environments do not have. On the
other hand, Grid environments are intended to execute
much diverse applications compared to the traditional
environments.

The research topic of Grid load balancing is quite
young. No very successful load balancing systems has
been proposed and reported and a few proposed systems
have many limitations. Hence, with the development and
popularity of Grid computing, much worl must be done in
order to enable grid computing to be a real platform
delivering high performance services.

Tn addition to enhancements to classic load balancing
algorithms, new methodologies are applied, such as the
Grid economic models and Nature’s heuristics.

REFERENCES

1. Foster, 1., 2002. The grid: A new infrastructure for
21st Century Science. Hysics Today, 55: 42-47.

2. Foster, I. and C. Kesselman, 1998. The grid: blueprint
for a new computing infrastructure, Morgan
Kaufmann.

3. Arora, M., SK. Das and R. Biswas, 2002. A
decentralized scheduling and load balancing
algorithm for heterogeneous grid environments. In
Proc. of Intemational Conference on Parallel
Processing Workshops (ICPPW'02), Vancouver,
British Columbia Canada, pp: 499-505.

4. Fangpeng Dong and G. Akl Selim, 2006. Scheduling
algorithms for grid computing: state of the art and
open problems. Techmcal Report No. 2006-504,
Schoeol of Computing, Queen’s Umversity Kingston,
Ontario.

5. Kabalan, K.Y., WW. Smar and I.Y. Hakimian, 2002.
Adaptive load sharing in heterogeneous systems:
Policies, modifications and smmulation. Intl. T.
SIMULATION, 3: 89-100.

1102

10.

11.

12.

13.

14.

15.

16.

Asian J. Inform. Tech., 5 (10): 1095-1103, 2006

Xu, C.Z. and F.CM. Lau, 1997. Load balancing in
parallel computers: Theory and practice, Kluwer,
Boston, MA.

Kristian Paul Bubendorfer, 1996. Resource based
policies for load distribution. Master thesis, Victoria
University of Wellington.

Zhu, Y., 2003. A survey on grid scheduling systems.
Technical report, Department of Computer Science,
Hong Kong University of Science and Technology.
Nieuwpoort, R.V., T. Kielmann and H.E. Bal, 2001.
Efficient load balancing for wide-area divide-and-
conguer applications. In Proc. Highth ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP'01), Snowbird, UT, pp: 34-43.
Ferrari, D. and S. Zhou, 1987. An empirical
investigation of load indices for load balancing
applications. Proc. of 12th International Symposium
on Computer Performance Modeling Measurement
and Evaluation, pp: 515-528.

Casavant, T.I.. and J.G. Kuhl, 1994. A taxonomy of
scheduling in general purpose distributed computing
systems. IEEE Trans. Software Engin., 14: 141-153.
Rotithor, H.G., 1994. Taxonomy of dynamic task
scheduling in distributed computing
systems. In TEE Proc. on Computer and Digital
Techmques, 141: 1-10.

Berman, F., 1998. High-performance schedulers,
chapter in the grid: blueprint for a future computing
infrastructure, edited by Foster 1. and Kesselman C.,
Morgan Kaufmann Publishers.

Hamscher, V., U. Schwiegelshohn, A. Streit and R.
Yahyapour, 2000. Evaluation of job-scheduling
strategies for grid computing. GRID, pp: 191-202.
Shan, H., L. Oliker, R. Biswas and W. Smith, 2004.
Scheduling m heterogeneous grid environments: The
effects of data migration. Tn Proc. of ADCOM2004:
International Conference on Advanced Computing

schemes

and Commumecation, India.

Foster, 1. and C. Kesselman C. (Eds.), 1999. The gnid:
blueprint for a future computing infrastructure,
Morgan Kaufmann Publishers, TUSA.

17.

18.

19.

20.

21.

22,

23.

24.

25

26.

1103

Foster, I., C. Kesselman and 5. Tuecke, 2001. The
anatomy of the grid: Enabling scalable virtual
organizations. In the Intl. T Supercomputer
Applications, 15: 200-220.

Schopf, 1.,2001. Ten actions when superscheduling.
Document of scheduling working group, global grid
forum, http:/fwww.ggf.org/documents/GFD 4. pdf.
Su, A., F. Berman, R. Wolski and M. Mills Strout,
1999, Using apples to schedule simple SARA on the
computational grid In International J. of High
Performance Computing Applications, 13: 253-262.
Dail, H., H. Casanova and F. Berman, 2002. A
decoupled scheduling approach for the GrADS
enwviromment. In Proc. 2002 ACM/IEEE conference on
Supercomputing, Baltimore, Maryland USA, pp: 1-14.
Casanova, H., M. Kim, I.S. Plank and I.J. Dongarra,
1999. Adaptive scheduling for task farming with grid
middleware. In the International . High Performance
Computing Applications, pp: 231-240.

Aggarwal, AK. and R.D. Kent, 2005. An adaptive
generalized scheduler for grid applications. Tn Proc.
of the 19th Anmual Intl. Symposium on High
Performance Comput. Sys. Applications (HPCS’05),
Guelph, Ontario Canada, pp: 15-18.

Wu, M. and X. Sun, 2003. A general self-adaptive
task scheduling system for non-dedicated
heterogeneous computing. In Proc. of TEEE
International Conference on Cluster Computing
(CLUSTER'03), Hong Kong, pp: 354-361.
Abraham, A., R. Buyya and B. Nath, 2000. Nature's
Heuristics for scheduling jobs on computational
grids. In Proc. of &th IEEE Intl Conf. Adv.
Comput. Communicat. (ADCOM 2000), Cochin,
India, pp: 45-52.

Alaoui, Frieder and El-Ghazawi, 1999. A parallel
genetic algorithm for task mapping on parallel
machines. Job scheduling strategies for parallel
processing: {IPPS} '95 Workshop, LNCS.
FlorinLeon, Dan Galea and Mihai Horia Zaharia, 2002,
Load balancing in distributed systems using
cognitive behavioral models. Bulletin of Techmical
University of Tasi, tome XLVIIT (LI), fasc. 1-4,
pp: 119-124.

