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Abstract: For the purpose of modeling Discrete Event Systems (DES), a Petri net-based modeling framework
called Dan/Petr1 Net (D/PN) 1s presented, working only with subnets and having a different enabling rule based
on an arcs-counting function and non-boolean guards called dans. And Controlled D/PN is one extension
developed to explain the modeling of multiple and simultaneous control (MSC) in DES through the fundamental
MSC subnet and its notation convention, called valid MSC subnet 5% and its derivative subnet & *@. At the
end of this paper we present the usage of Controlled D/PN in the MSC design for an D/PN model

through MSC subnets.
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INTRODUCTION

Petri Net (PN) has proved for many years to be not

[1.2]

just a classic tool, but a very useful in the modeling'™* and

control®4

of distributed dynamic systems which present
concurrency and non-determinism.

This study tackles the modeling of Multiple and
Simultaneous Control (MSC) of Discrete Event Systems
(DES). These are systems where, from a set of conditions
B, there exist a symmetric combinatorial series of causal
dependencies (called events) between one (mitial)
condition b, € B with a subset of final conditions B; < B.
And these events can be controlled with a subset of
which individually,

associatively and collectively, called MSC, representing

controllers can be activated
individual and multiple controls.

For these, we have created Dan/Petri Net (D/PN)
which can model the state-transition structure of DES like
an ordinary PN despite the novelty of working with
single-transition subnets and having a different enabling
rule based on two new elements: an arcs-counting
function for each transition and non-beolean guards
called dans. Later, from the results of Krogh’s Controlled
Petr1 nets (CtlPN’s) and feedback logic for marked
graphs™ and Ichikawa and Hiraishi’s decision-free Petri
net with external input and output places™, we identify
external input ports (called controllers from now on) which
could simultaneously provide individual and multiple

controls in a system (MSC) and to model this MSC-logic,
we defined a D/PN-based modeling framework called
Controlled Dan/Petri net (Controlled D/PN), which uses a
different type of places called controllers restricted to
exist only in MSC subnets (Jiménez, Araki and Kusakabe
2006). The relationship between PN, D/PN and Controlled
D/PN can be more easily understandable in the Fig. 1.
The first and main different between our control
modeling framework and the previous two 1s that, one
controlled transition can have one or more controllers and
one controller can control one or more controlled
transitions, which 1s the fundament for MSC subnets.
And the way to model MSC subnets are based on the
amount of controlled transitions obtamed for each
possible combinatorial relation of controllers. These
relations are a cluster of siphons in an MSC subnet, where

| Control-logic | | State-trensition |
+Places P
+Petri net * Transitions T
*PxT, TxP
*D/PN
Controlled *Danst
D/PN « Controllers Q
«QxT
Controlled D/PN: D/PN:
D/PN with cortrollers A petri net with
resticted in MSC subnets dans as guards

Fig. 1: Diagram of D/PN and Controlled /PN
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we can see one siphon when all the controllers form a
collective subset, siphons when the controllers form
associate subsets and siphons when the controllers form
individual subsets.

The fundamental MSC subnet contains a complete
combinatorial arrangement of controlled transitions and
allow just one controlled transition to be enabled through
the enabling rule and it is called a valid MSC subnet X
(or just VMSCS Z*®). And when this subnet lacks of all
the transitions controlled individually by one controller
and lack of all the transitions controlled associatively by
more than one controller up to a specific associative
contrel, it is a derivative subnet called the VMSCS X *2,

Without loss of generality, the simplest VMSCS %@
is the net %*® containing just two contrellers g, and q,
which can change the state of the DES Fig. 2c.

For controlled D/PN, distributive
perspective, the state-transition is preserved through
D/PN and so 1t 1s non-determinism between all types of
subnets (single-transition subnets and MSC subnets).

from the

This lead us to use the words concurrency and
simultaneity by separate, limiting the usage of one of
them under the Controlled D/PN domains and explaining
them later.

This study is constructed as follows: section two
describes D/PN and controlled D/PN; section three
explains the VMSCS %°9 and the derivative VMSCS %,%;
section four explain the properties of the VMSCS Z* and
conditions to preserve the properties in the derivative
VMSCS ., section five explains a simple design of
MSC for a bounded D/PN model based on the algorithm
to design MSC for marking control in'™l. In the last section
are the conclusions and further research.

D/PN AND CONTROLLED D/PN

A D/PN is a PN-based modeling framework formally
introduced in™ and used to model DES. It is a single-arc,
safe and self-loop free PN extension.

A Petrinetis atuple M = (P, T, I, O) which 1s a finite
bipartite directed graph where:

* P is a fimte non-empty set of conditions called
places,

* T 1s a finite non-empty set of transitions where
PnT=oea,

*» I c (P xT)is the set of directed arcs connecting
places to transitions and

¢ O c (T = P) is the set of directed arcs connecting
transitions to places.

Places are graphically represented by circles,
transitions by rectangles and all directed arcs by arrows.
Lette T. If I{p, t) # @ then we call »t the pre-conditions of
t and they constitute the preset of mput places of t. If
O(t, p) # 2 then we call te the post-conditions of t and
they constitute the postset of output places of t.

Letpe P. If Ot, p) # o then we call »p the pre-events
of p and they constitute the preset of input transitions of
p- IfI(p, t) # @ then we call pe as the post-events of p and
they constitute the postset of output transition of p.

A non-empty subset of places S ¢ P is called a
Siphon if #S c Se and has the property that once it is
empty of tokens, it will remain empty.

And a non-empty subset of places S ¢ P 1s called a
Trap if Se < S and has the property that if it has one
token, it will continue having at least one token.

We suppose that the reader 1s famihar with the PN
terminology, therefore most of the PN characterizations
are assumed for D/PN, except the ones which are
explained.

A D/PN is atuple N = (M, T), where:

» MisaPN,
¢ T is a finite non-empty set of alphanumerical guards
called dans,

The set T € M 1s redefined as a finite non-empty set
of single-transition subnets, (or sometimes just
transitions)] and dans are graphically represented by
subnet identifiers n the transitions.

The set of dans T' defines the subnets. For D/PN, a
subnet 18 composed by one transition with one unique
dan, having a subset of input and output places.

The subnet-belonging function g maps T to I" where
vte T, g (t) € I, i.e., no transition has the dan null.

For an arbitrary transition t € T, we define the amount
of all directed arcs of the set I gomng to t as the function
¢ (t), mapping ¢ (t) to {1, 2,. ..}.

Let m be a function of set P called marking, mapping
P to {0, 1}, where m, 1s the imtial marking. We say that a
place p 1s marked iff m (p) = 1. The finite set of all possible
markings (1.e., the state space) for a D/PN 1s denoted by
M. A D/PN with initial marking will be denoted by (N, m,).
For a D/PN N, suppose there is one arbitrary subnet with
one transition t € T and has assighed one dan 4 € I". We
call t* an enabled transition in a marking m when it covers
its input places but not its output places and has the
highest value when evaluating ¢ (t*) against all other
transitions with the same dan; 1e. ¥t e T: g ()= A, 3 _t*
o) =eA[t*cm At enm=12 ]
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The set of all enabled transitions in a marking m is
defined as T* (m) or just T*.

The basic characterization of D/PN 1s just to add one
unique dan to each transition and yet the behavior of the
D/PN prevail the same as an ordinary PN when modeling
the state-transition of a DES. Out of D/PN and for the case
when more than one transitions have the same dan, these
transitions, their mput and output places and arcs belong
to one subnet of single-transitions subnets {(or just
called subnet of transitions) and only exist in another
modeling framework called D/PN, which 1s implicitly
assumed m all this paper for modeling Controlled
D/PN and explained next.

Controlled D/PN: A Controlled D/PN 15 a D/PN with
extended modeling capabilities intended to model MSC.
From Ichikawa and Hiraishi’s results on the control of
DES, some of their characterizations are used for our
Controlled D/PN, except the ones explained here.

A Controlled D/PN is a tuple G = (N, Q, D), where N
is a D/PN defined previously, Q is a finite set of places
called controllers which are graphically represented by
circles with thicker lines (to distinguish from regular
places) and D < (QxT) 1s the set of directed arcs
connecting controllers to transitions of N and they are
represented by arrows.

Lette T.IfD (g, t) # @ then we call ot the controllers
of t and they constitute the preset of controllers of t.

Tetqe Q. IfD (g, t) # @ then we call ge as the control
of g and they constitute the postset of controlled
transitions of g.

For Controlled D/PN, the set of transitions T can be
seenn as two subsets, one of uncontrolled transitions
T,=4{teT|VqeQ, (g, t) ¢ D} where each transition have
one unique dan and are called uncontrolled single-
transition subnets (or just called single-transition
subnets) Fig. 2a and the other subset of controlled
transitions T, = {t € T | (g, t) € D} where each transition
have one unique dan and are called controlled
single-transition subnets (or just controlled transition)
Fig. 2b. When more than one controlled transition has
the same dan, they belong together with their pre
and post-conditions and arcs to a subnet of controlled
single-transition subnets (or just subnet of controlled
transitions) Fig. 2¢. Every controlled single-transition
subnet and every subnet of controlled single-transition
subnets are called MSC subnets.

Let u be a function of the set Q called control,
mapping Q to {0, 1}, where u, is the initial control. We say
that a controller ¢ is active iff u{q) = 1. The finite set of
admissible controls for a Controlled D/PN 1s denoted by
U. A Controlled D/PN with mitial marking and control will

Fig. 2. The three basic types of subnets: a) subnet of
{uncontrelled) single-transition; b) VMSCS I«
with a controlled single-transition; and ¢) VMSCS
5 of controlled transitions

be denoted by (G, m,, uy). The marking of a controller g in
the net 1s not necessarily always defined in the mitial
condition. Tokens can be deposited consecutively in Q at
any discrete step, making the marking of one controller an
individual control and an associative control or collective
control if tokens are simultaneously put in more than one
controller or all controllers.

The time is not specified in this modeling framework
and  discrete step is defined as the instant where a
state-transition occurs.

Controllers have capacity of one token and can hold
it during just one discrete step. Each token in a controller
represent an instantaneous control impulse in a system
with a dependent existence based on the condition of its
MSC module. If in the state of the system the condition of
the MSC module does not hold, a control can not exist.
Therefore, in order for a token to exist in a controller and
before it 1s consumed by a controlled transition, a token
must exist m the mput place of the same MSC subnet.
More than one controller can be assigned to one
transition of the same MSC subnet and cne controller
can be assigned to different transitions of the same
MSC subnet.

For a Controlled D/PN G, suppose there is one
arbitrary MSC subnet with one dan A € T" assigned to all
its controlled transitions t, € T, We call t* an enabled
transition m a marking m and control u, when the control
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u covers its controllers, the marking m covers its input
places but not its output places and has the highest value
when evaluating ¢ (t*) against other controlled
transitions with the same dan and covered under the same
marking m and control u in the MSC subnet. Formally:
PteT, gt)=4, It*ct)=c () A st  cm A [t
nm=o A [st*cul

For controlled D/PN, the function ¢ (t) in the enabling
rule considers only the directed arcs from the set D since
the relations in the set T are implicitly assumed through
the marking m. And for the underlymmg D/PN, all
uncontrolled transitions in T, are control active by nature
and follow the enabling rule of D/PN.

For a Controlled D/PN G containing uncontrolled and
controlled transitions at a given marking m and control u,
the set of all enabled transitions (uncontrolled t, and
controlled t,) is defined as T, *(m, u) or just T .*.

Uncontrolled transitions are single-transition subnets
of D/PN and they are left to fire when they have been
enabled. Controlled transitions exists in MSC subnets of
Controlled D/PN and fire when they are fireable (i.e., there
is not just a marking m, but a control u). The result will be
the same as an ordinary PN, to eliminate the marking m
(and control u) and to create a new making m’.

From between single-transitions subnets and
controlled single-transition subnet, more than one
transition 18 allowed to fire at a discrete step when they
are concurrently fireable. And from within subnets of
controlled transitions, more than one transition could fire
in a subnet, but when only one transition can fire, this
subnet 1s called a Valid MSC Subnet (VMSCS). A
controlled single-transition subnet 1s also a VMSCS. The
VMSCS will be explained in details in the next section.

Given a marking and control (m, u) of G, the firing of
all the enabled transitions T, *(m, u) in G, which elimimates
the marking m and the control u and creates the new
marking m’ is defined as (m, w)[T,*>m’. Tts effect is to
eliminate the token in m and the control u and to put new
tokens mm’.

Now, from the definitions of state and transition
provided in the common literature of PN, we have limited
the usage of the word simultaneous under Controlled
D/PN domains, saying that [a (distributed) state is a set of
conditions holding simultaneously |v; for the previcus
definitions, m’ 1s said to be marked simultaneously. And
so it is for controllers, saying that [putting tokens in more
than one controller at the same discrete step 1s said to be
a simultaneous marking | Now we have respected the
usual meaning of the word concurrency, saying that [a
(distributed) transition 15 a set of events occurring
concurrently |, it is two or more transitions which are
causally independent from firing at the same time.

Therefore, from the previous definition, the enabled
transitions of T *(m, u) are said to fire concurrently.

THE VALID MSC SUBNET Z*® AND THE
DERIVATIVE SUBNET X @

For controlled D/PN, an MSC subnet is composed of:
a subset of controllers (, one unique input place p, € P,
one arbitrary dan A € T, a subset of controlled transitions
where W't € T, : g (t.) = A, a subset of output places P, P
and a subset of directed arcs I, O and D.

AnMSC subnet 1s called a VMSCS 1ff under contact-
free conditions in the subnet (i.e. there are no tokens in
the output places of the subnet) and throughout the
enabling rule, there exists just one unique enabled
transition t.* in the MSC subnet for a marking m and
control u. Controlled /PN must work only with VMSCS’s
in order to congruently model the control-logic of any
MSC module.

A controlled D/PN is called a net ™ iff it contains
just one VMSCS with 5°® symmetry. A net 5% is
composed of: a set of controllers Q, one unique input
place p, € P, one arbitrary dan A £ T, a set of controlled
transitions where vt € T, : g (t.) = A, a subset of output
places P;c P and the sets of directed arcs T, O and D. The
%9 symmetry refers to the possible amount of contrelled
transitions T, in the net %°@, which follow the symmetric
series of 1,3, 7, 15,. .. and 1s represented in the formula (1),
described from the exhaustive or complete (collectively,
associatively and mdividually) combinatorial amount of
controllers Q (only when it 1s > 2). Lets assign k as the
cardinality of set Q and define the amount of controlled
transitions T, in X by:

TC

=1+ Y Ptk @

1=2—k-1

where (%) = al/(a-b)!bl.

A controlled D/PN is called a net Z,*® iff it contains
just one VMSCS %% which lacks of the transitions
controlled individually (by one controller) and some
transitions controlled associatively (by more than one
controller, except the collective association) up to an n™
trimmed control. When net %*# was trimmed from all the
transitions controlled by one or two controllers, we say it
1s a net %,°®. When it was trimmed from all the transitions
controlled by three or less controllers, we say it is a net
%%, etc. Therefore the net 5,*? is an absolutely-trimmed
VMSCS 2% with @ symmetry trimmed at n®-associative
control (for n > 1). The possible amount of controlled
transitions T, in %,*? trimmed at n"-associative control
follows the series represented in the formula (2) below.
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They describe the collectively and associatively (but
not individually) combinatorial amount of controllers
(only for Q > 2) trimmed at the associative control n. Lets
assign k as the cardinality of set Q and x as the trimmed
control n and define the amount of controlled transitions
T.in 5. by:

IT)=1+ 3 ) @

j=x—k-1

Individual, associative and collective control: MSCmeans
the existence of three types of controls: individual,
associative and collective. We talk about ndividual
(or single) control when one controller controls a
transition and defined with n = 1. Associative control
when two or more controllers control a transition, defined
with n = 2 for two controllers, 1 = 3 for three controllers,
etc. And collective control when all the controllers control
a transition and defined withn =k.

For the combinations of (¥,) controllers represented
by the number one in the formula (1) and (2), we have the
subset 2% = {q,. q.. ... q.}. We call the collective control
n = k of the VMSCS as the subset C = T, containing ()
(1.e. one) controlled transition t,,, € C. The umon { p; } v
Z# € ot And it contains a subset of k directed arcs D,
c D where each arc connects every controller in 5* with
t; and a subset with one directed arc I, = T where the arc
connects p; with t .

When the VMSCS X is trimmed at the collective
contrel (when n=k), it is a VMSCS 2, called £,*% with
one controlled single-transition and 2 controllers Fig. 3,
5 for 3 controllers Fig. 4c, T, for 4 controllers
Fig. 5d), etc.

For the combinations of (*,,) controllers, we have the
subset Q¥ = {(q;, Qs Qo). (@ Qo - Qs A2 (44 G 5

o Qs Gets Qe s (@ Qs s Qs Qs Qo). We call the
associative control n = k-1 of the VMSCS as the subset

A, © T, containing (%) controlled transitions t, . top.
s tagener € Agy. The union of { p; } with every controller
of the first element of the subset Q**" € ot ,; the union
of §{ p } with every controller of the second element of
the subset Q¥ ¢ stopt;. ..; and the union of { p;} with
every controller of the 1ast element of the subset Q%"
€ #t .1 And it contains a subset of (k-1)*(",.,) directed
arcs D, € D where each arc connects every controller of
every element in Q®" with its carresponding controlled
transition in A, | and a subset of (¥, directed arcs I, < I
where each arc commects p; with every controlled
transition in A, .

When the VMSCS O is trimmed at the associative
control n = k-1, it is a VMSCS X% called 3,*¥ with 4
controlled transitions and 3 controllers Fig. 4b, 5.

QU P 9;

A

Fig. 3: The controlled D/PN %,*®. The postset of output
places can be arranged in any association

with 5 controlled transitions and 4 controllers Fig. S¢, X,
with 6 controlled transitions and 5 controllers, etc.

For the combinations of (*,,) controllers, we have the
subset Q%% = {(q, Qo> Gez)s (G Do > Gies> G (s G
s s Qs s (Qowe oos Gers Qo). We call the associative
control n = k-2 of the VMSCS as the subset A,, = T,
containing (,,) controlled transitions typ . topa - » e
2 € Ay, The union of {p} with every controller of the first
element of the subset Q% € ot ,, .- the union of {p} with
every controller of the second element of the subset Q%
€ sty .. and the union of {p;} with every controller of
the last element of the subset Q™7 & oty . And it
contains a subset of (k-2)*(Y,,) directed arcs D, = D
where each arc commects every controller of every element
in Q®¥ with its corresponding contrelled transition in
Ay, and a subset of (%, ,) directed arcs I, c T where each
arc connects p; with every controlled transition in A,

When the VMSCS @ is trimmed at the associative
control n = k-2, it is a VMSCS Z.*® called Z,*” with 11
controlled transitions and 4 controllers Fig. 5b, £,*” with
16 contrelled transitions and 5 controllers, 5,*? with 22
controlled transitions and 6 controllers, etc.

And by following the same procedure for the
combinations of (,.), (..).. ... () controllers, we have the
subsets QW QU Q%) We call the associative
control n = k-3 of the VMSCS as the subset A,, = T,
containing (), ;) controlled transitions ty., tups - » bapape
; € Ay, associative control n = k-4 of the VMSCS as the
subset A, = T, containing (¥, ) controlled transitions t,,
o toper - Toppaps € Bl .5 @ssoclative control n = 2 of
the VMSCS as the subset A, = T, containing (9,)
controlled transitions t.,, to,, ..., tge, €A,

The union of {p} with every controller of the first
element of the subset Q% € » t_, . the union of {p} with
every controller of the second element of the subset Q™
€ oty 5. .. and the union of {p;} with every controller of
the last element of the subset Q®*¥ € » t 4 \5 And it
contains a subset of (k-3)*(Y,,) directed arcs D,, = D
where each arc commects every controller of every element
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Fig. 4 The controlled D/PN Z* (a), £,* (b) and 2,*” (c).
The Postset of Output Places Can Be Arranged in
Any Association

in Q™% with its corresponding controlled transition in
A, , and a subset of (*,,) directed arcs I, ; = I where each
arc commects p, with every controlled transition in A, ;.

When the VMSCS O is trimmed at the associative
control n = k-3, it is a VMSCS %9 called %,*¢ with 26
controlled transiticns and 5 controllers, I,*® with 42
controlled transiticns and 6 controllers, I,*” with 64
controlled transitions and 7 controllers, etc.

The union of {p;} with every controller of the first
element of the subset Q*** € ot ,, ,; the union of {p,} with
every controller of the second element of the subset Q¥**

€ ¢t 4;- .- and the union of {p} with every controller of
the last element of the subset Q*** € ot 4y 4. And it
contains a subset of (k-4)*(Y,,) directed arcs D,, = D
where each arc commects every controller of every element
in Q%% with its corresponding contrelled transition in
Ay, and a subset of (¥,4) directed arcs I,, c I where each
arc connects p; with every controlled transition in A,.

When the VMSCS %@ s trimmed at the associative
control n = k-4, it is a VMSCS % called %, with 57
controlled transitions and & controllers, %.*” with 99
controlled transitions and 7 controllers, ,*¥ with 163
controlled transitions and & controllers, etc.

And we follow same procedure until reaching the
union of {p} with the two controllers of the first element
of the subset Q** € ot_; the union of {p;} with the two
controllers of the second element of the subset Q™ ¢
sty .. and the union of {p;} with the two controllers of
the last element of the subset Q® € ot ,, And it
contains a subset of (2)*(*),) directed arcs D, = D where
each arc connects the two controller of every element in
Q¥ with its corresponding controlled transition in A, and
a subset of (%,) directed arcs I, c I where each arc
connects p, with every controlled transition m A,

When the VMSCS X% i3 trimmed at the associative
control n = 2, it is a VMSCS Z*@ called %,*” with 1
controlled transiticn and 2 controllers (since X has 2
assoclative controls, 1t can also be said to be trimmed at
n =k, Fig. 3), Z,*® with 4 controlled transition and 3
controllers (since %*¥ has 3 associative controls, it can
also be said to be trimmed at n = k-1 Fig. 4b), 5, with 11
controlled transitions and 4 controllers (since %™ has 4
associative controls, it can also be said to be trimmed at
n = k-2, Fig. 5b), ,*" with 26 controlled transition and 5
controllers (since %°¥ has 5 associative controls, it can
also be said to be trinmed at n = k-3), etc. The subset of
associative comtrol A, 1s the lowest associative control
where the VMSCS Z* can be trimmed and they are all the
derivative subnets 5,9

Finally, for the combinations of (,) controllers
represented by k just in the three previous formulas, we
have the subset Q™" = {(q,), (q). .., (q)}. We call the
individual (or single) control of the VMSCS as the
subset S c T, containing (*,) (i.e., k) controlled transitions
tops g ---s tgny € S, The union of {p} with the first
element of the set Q*" € ot,,;; the union of {p;} with the
second element of the set Q*Y ¢ t.i;. ..; and the union of
{p.} with the last element of the set Q¥ € ot And it
contains a subset of k directed arcs D, < D where each arc
conmects every element in Q%" with its corresponding
controlled transiton m S; and a subset of k directed
arcs [| — I where each arc connects p, with every
controlled transition in S.
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@

Fig. 5: The Centrolled D/PN ¥ (a), 5,* (b), X ™ (¢)
and %,*" (d). The postset of output places can be
arranged 1 any association

The VMSCS % can not be trimmed at the last
(individual or single) control because it will lead to a
redundant notaticn, therefore 1s excluded from the formula
(2). The VMSCS X called *® is the VMSCS =% with
one controlled single-transition Fig. 2b. The VMSCS
%,# is the subnet %°® with three controlled transitions
Fig. 2¢; I is Z* with seven controlled transitions
Fig. 4a, % is " with fifteen controlled transitions
Fig. 5a, etc.

Now, out of the formula (1) and for the cases where
there exist two controllers (i.e., when k = 2) for the VMSCS
29 the number of transitions is calculated with (°],) + (°],)
= 3, containing four directed arcs d € D and three directed
arcs i € I. And for the case where k = 1 follows easily that
1t 18 a subnet with a controlled single-transition with one
directed arc d and one directed arc 1.

SIMULATING ZERO-TOKEN BEHAVIOR
WITH THE VMSCS

Controlled D/PN does not detect zero-token in the
places, but its enabling rule, under contact-free
conditions, allow any VMSCS’s to behave just like a
PN with mhibitor arcs, making any VMSCS a partially
Turing-machine.

In the modeling using PN, inhibitor arcs are the
Turing-power modeling extension which allow this zero-
testing; however, when it comes to model the fundamental
VMSCS 2, the more controllers q exist in it, the higher
the amount of necessary controlled transitions t, as the
result of all possible combinations between them and so
it 18 for the amount of necessary arcs and specially
inhibitor arcs. But for Controlled D/PN, the amount of arcs
15 less than in PN since it does not need inhibitor arcs.

For example, the net Z*® shown in the Fig. 4a can
be modeled with the PN of the Fig. 6. which have
inhibitor arcs.

A visual comparison of the two models let us see it
18 more visually-friendly the model of Fig 4-a than the one
in Fig. 6. A more formal comparison 1s the one for the
amount of arcs between the VMSCS 2@ with Controlled
D/PN and its corresponding PN with inhibitor arcs is
shown m the Fig. 7. where the exponential growth of the
amount of arcs 1n the models using PN 1s faster compared
with the ones using Controlled D/PN.

The enabling rule of Controlled /PN satisty our
modeling necessities regarding the zero-testing in
VMSCS's while preserving non-determinism between any
other subnets. Each combinatorial amount of controllers
in the VMSC'S £ is a subset of pre-conditions and they
define a natural MSC-logic for all its controlled transitions
based on the amount of incoming arcs.
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Fig. 6. A PN with inhibitor arcs, with same behavior of
the VMSCS ™. The postset of output places can
be arranged in any association
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Fig. 7. Comparison between the amount of arcs for PN
and TD/PN with the behavior of the VMS(S £°@

In the VMSCS 5%, the modeler is not fully defining
the transition that should fire, but nstead, the enabling
rule creates an enabling order overlooking the transitions
according with their amount of incoming arcs and the
selection of the transition to fire is determined just by the
marking and control.

The VMSCS 2% is just a completely exhaustive
combinatorial structure which allows the congruent
MSC-logic when working with the disregarding
zero-testing enabling rule of Controlled D/PN, behaving
like a decision-free Petri net (df-net) under contact-free
conditions”.

And the derivative VMSCS %,*@ with its incomplete
structure 1s also a df-net as long as its timming preserve
same MSC-logic.

Property: The trimming of ,** preserve the MSC-logic of
the VMSCS Z*® when it is a progressive trimming which
starts at the lowest control, 1.e, n=1.

From the results in'” in the VMSCS X%, through the
enabling rule we identify a cluster of df-nets in the form of
siphons. The enabling starts from the highest control (the
collective control, when n = k) and continue to lower
controls (associative controls), until reaching the lowest
control (individual control, when n = 1). Therefore any
trimming which starts from the mdividual control and
without skipping any control sequence in the trimming of
higher controls, preserves the MSC-logic of the VMSCS
5% making the derivative VMSCS 5, still a cluster of
df-nets mn the form of siphons.

Property: The derivative VMSCS X is partially
equivalent to a Turing machine.

A df-net has the power of a Turing machine and has
the ability to detect zero-token in places. The net X is
a clusters of df-nets and despite Controlled D/PN does
not detect zero-token, the enabling rule allows this
derivative VMSCS to simulate the same zero-token
behavior under contact-free conditions, making them
behave like Turing machine.

MSC DESIGN

Controlled D/PN was firstly created to explam MSC
and its modeling using VMSCS’s. However, the ultimate
purpose 18 to design MSC using VMSCS’s. In this section
we present a simple control design for marking control
using Controlled D/PN, which is an extension to the
control design algorithm in'™, where necessary and
sufficient conditions for reachability were obtained for a
trap-containing PN (tc-net) B, if any fundamental circuit is
a trap and:

»  x 18 the mimmal non-negative solution of the sate
equation m; = m, + Bx.
+  All siphons in Ax are marked at m,,.

Also sufficient conditions for reachability were
obtained for trap-containing circuit PN (tcc-net) &, if any
circuit m the net contains a trap and:

»  x 18 the mimmal non-negative solution of the sate
equation m; = m, + Bx.
»  All siphons in @x contain marked trap at m,.

Therefore, to define the MSC (the set of controllers
and controls) that reaches a target marking mg our
algorithm should be limited for the type of nets contamning
these conditions.
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Fig. 8 A D/PN Model with Tnitial Marking in p,, p, and p,
and Enabled transitions t and 4

Fig. 9. A Controlled D/PN Model with Tnitial Marking in
P> Py and p; and Marked Controller q,

It will be for the bounded D/PN model presented in
Fig. 8, where the initial condition is already known.

From the initial state m, = (1 0 01 0 0 1) we want to
design a MSC to obtain a behavior that reaches the
marking m;=(0111010)inourmodel. The mimimal non-
negative solution of the sate matrix m; = m, + Bx 1s the
vectorx =(201 1 00 1) with a firing sequence satisfying
the conditions stipulated before.

One difference in our algorithm with the one in' is
when assigning the controllers. Tnstead of adding one
controller to each fireable transition at m,, first we identify
from among those transitions the ones with the same
input place p, and associate them as subnets of controlled
transitions by assigning one unique dan to each subnet.
We count the number of controlled transitions in
each subnet and from the symmetric series of ¥ and
3, search for the number of transitions and select
the one with the mimmal number of controllers (for
this example, our judgment is based in using as less as
possible) and assign those controllers according with
the selected VMSCS.

For this example we select the VMSCS X9, where
two controllers can design this MSC for three controlled
transitions. We connect the controllers g, and g, to the
transitions t,, t, and t, and fix the same dan for them in
order to identify this VMSCS. Then we can obtain the
Controlled D/PN model of the Fig. ©.

For the control, we deposit the corresponding token

in the controllers as in'™, at each comsecutively and

corresponding discrete step to achieve our control. First
we deposit one token at controller g; and let the model to
fire freely. Uncontrolled transitions t, and t, fire, resulting

inthemarking (01 11 01 0). Then the control is activated,
enabling the controlled transition t; to fire and
resulting in the marking (1 0 1 0 0 1 0). Finally the
transitions t, and t; fire consecutively, reaching the
desred marking (011101 0).

CONCLUSION

Controlled D/PN claims to reduce the amount of
necessary controllers i the modeling and design of MSC
using VMSCS’s. It claims to provide the determimst
congruency of a Turing machine for these VMSCS’s. And
finally, to create a more visually-friendly nets that could
model the VMSCS’s, by reducing the amount of
necessary arcs for not using inhibitor arcs.

The two VMSCS’s 2@ and X_*@ can be seen as two
types of scalable symmetries for VMSCS’s, belonging to
a systematized subnet structures or siphons notation for
Controlled /PN which model the proper behavior of MSC
modules.

This research will continue in defining other families
of derivative VMSCS’s in order to extend the modeling
scope for control with MSC subnets.
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