Medwen

© Medwell Online, 2006

Asian Journal of Information Technology 5 (10): 1137-1141, 2006

A Parallel Processing Approach to Image Processing Application
Using Simultaneous Multi Threading

K. Manjunathachari
Department of ECE, G. Pulla Reddy Engineering Collge, Kurnool-518004, A P, India

Abstract: Typical real time image processing applications require a huge amount of processing power,
computing ability and large resources to perform the image processing applications. The limitations appear on
image processing systems due to the volumetric data of image to be processed. This challenge 1s more
dominant when coming to process the image processing applications parallely. Parallel processing appears to
be the only solution to attain ligher speed of operation at real time resource constraints. The nature of
processing in typical image processing algorithms ranges from large arithmetic operations to fewer one.
Although the existing parallel computing systems provide to some extent parallelism for image processing but
fails to support image processing operations varying at a large rate. As part of my thesis, this study presents
a novel parallel processing approach to image processing applications using simultaneous multithreading by
bifurcating the operations of parallelism into three distinct layers.

Key words: Bucket processing, SIMD, MIMD, simultaneous multithreading

INTRODUCTION

The type of processing operations in a typical image
processing task varies greatly. Generally three levels of
image processing are distinguished to analyze and tackle
the image processing application: low-level operations,
mntermediate-level operations and high-level operations.

Low-level operations: Images are transformed into
modified images. These operations work on whole image
structures and yield an image, a vector, or a single value.
The computations have a local nature; they work on
single pixels in an image. Examples of low-level operations
are: smoothing, convolution, histogram generation.

Intermediate-level operations: Images are transformed
mto other data structures. These operations work on
images and produce more compact data structures
(e.g., a list). The computations usually do not work on a
whole image but only on objects/segments (so called
areas of mterest) in the image. Examples of mtermediate-
level operations are: region labeling, motion analysis.

High-level operations: Information derived from mmages 1s
transformed into results or actions. These operations
work on data structures (e.g., a list) and lead to decisions
in the application. So high-level operations can be
characterized as symbolic processing. An example of a
high-level operation 1s object recognition.

A image processing starts with a plain image, or
sequence of images, (coming from a sensor) and, while
processing, the type of operations moves from arithmetic
(Floating Point Operations Per Second, FLOPS) to
symbolic (Million Logic Inferences Per Second, MLIPS)
and the amount of data to process is reduced until in the
end some decision 1s made (image understanding). As
may be obvious, unage processing tasks require large
amounts of (different type of) computations. When
real-time requirements are to be met, normal (sequential)
workstations are not fast enough. So more processing
power 18 needed and parallel processing seems to be
seems to be an economical way to satisfy these real time
requirements. Besides even when current workstations
get fast enough to do the image processing task of today,
parallel processing will offer more processing power and
open new application areas to explore.

Many architectures have been proposed that try to
exploit the available parallelism at different granularities.
For example, pipelined processors!'? and multiple
instruction issuing processors, such as the superscalar'*?
and VLTW"* machines, exploit the fine-grain parallelism
available at the In contrast,
shared memory multiprocessors'™” exploit coarse-grain
parallelism by distributing entire loop iterations to

instruction set level.
[6,7]

different processors. Each of these parallel architectures
have significant differences mn synchromzation overhead,
instruction scheduling constraints, memory latencies and
implementation details, making it difficult to determine
which architecture 13 best able to exploit the available

1137

Asian J. Inofrm. Tech., 5 (10): 1137-1141, 2006

parallelism. The performance potential of multiple
mstruction 1ssuing and its interaction with pipelining has
been investigated by several researchers™'". Their work
has shown that at the basic block level, pipelimng and
multiple mstruction 1ssuing are essentially equivalent in
exploiting fine-gramn parallelism. Studies using the PASM
prototype have indicated that the multiprocessor
organization may be outperformed by the SIMD
organization®¥ unless special care is taken to provide
efficient synchronization for the MIMD mode?. We
extend this previous work by comparing the performance
of a pipelined processor, a superscalar processor and a
shared memory multiprocessor when executing scientific
application programs.

In image processing applications the existing
approach to parallelism get constrained due to variant size
of data and the required resources. Hence a system is
required for the efficient controlling of image processing
application with variable data size. The proposed
approach realizes a parallel processing architecture
integrating the Simultaneous Multithreading Concept
(SMT) for the proper control and execution of variant
umage processing application.

MULTITHREADING AND SMT

Simultaneous multithreading is a processor design
that combines hardware multithreading with superscalar
processor technology to allow multiple threads to issue
instructions each cycle. Unlike other hardware
multithreaded architectures (such as the Tera MTA), in
which only a single hardware context (i.e., thread) is active
on any given cycle, SMT permits all thread contexts to
simultaneously compete for and share processor
resources. Unlike conventional superscalar processors,
which suffer from a lack of per-thread instruction-level
parallelism, simultanecus multithreading uses multiple
threads to compensate for low single-thread ILP. The
performance consequence is significantly higher
mstruction throughput and program speedups on a
variety of worlloads that include commercial databases,
web servers and scientific applications in both
multiprogrammed and parallel environments.

Simultaneous multithreading has already had impact
in both the academic and commercial commumties. The
project has produced numerous papers, most of which
have been published in journals or the top, journal-quality
architecture conferences and one of which was the most
recent paper selected for the 25th Anniversary Anthology
of the International

Symposium on Computer

Architecture, a competition in which the criteria for
SMT project at the
University of Washington has also spawned other
university projects in simultaneous multithreading. Lastly,
several U.S. chip manufacturers (Intel, IBM, Sun and
Compaq (when it still Alpha
microprocessor lme) have designed and manufactured

acceptance was impact. The

supported the

SMT processors for the high-end desktop market. Several
startups are also building SMT processors

Conventional processors execute instructions from a
single mstruction stream. Despite micro architectural
advances, execution unit utilization remains low i today’s
microprocessors. It is not unusual to see average
execution unit utilization rates of approximately 235%
across a broad spectrum of environments. To increase
execution unit utilization, designers use thread-level
parallelism, in which the physical processor core executes
instructions from more than one instruction stream. To
the operating system, the physical processor core appears
as 1f 1t 13 a symmetric multiprocessor contamung two
logical processors. There are at least thwee different
methods for handling multiple threads. In coarse-grained
multithreading, only one thread executes at any mstance.

When a tlread encounters a long-latency event,
such as a cache miss, the hardware swaps in a second
thread to use the machine’s resources, rather than letting
the machine remain idle. By allowing other work to use
what otherwise would be idle cycles, this scheme
increases overall system throughput. To conserve
resources, both threads share many system resources,
such as architectural registers. Hence, swapping program
control from one thread to another requires several cycles.
IBM mplemented coarse-grained multithreading in the
IBM eServer pSeries Model 680.2 A variant of coarse-
graimned multithreading 15 fine-gramed multithreading.
Machines of this class execute threads m successive
cycles, in round-robin fashion 3. Accommodating this
design requires duplicate hardware facilities. When a
thread encounters a long-latency event, its cycles remain
unused. Finally, in simultaneous multithreading (SMT), as
in other multithreaded implementations, the processor
fetches instructions from more than one thread.4 what
differentiates this implementation 1s its ability to schedule
instructions for execution from all threads concurrently.
With SMT, the system dynamically adjusts to the
enviromment, allowing mstructions to execute from each
thread if possible and allowing instructions from one
thread to utilize all the execution umits if the other thread
encounters a longlatency event.

1138

Asian J. Inofrm. Tech., 5 (10): 1137-1141, 2006

Enhanced SMT features: To improve SMT performance
for various workload mixes and provide robust quality of
service, we added two features to the Power5 chip:
dynamic resource balancing and adjustable thread

priority.

Dynamic resource balancing: The objective of dynamic
resource balancing 1s to ensure that the two threads
executing on the same processor flow smoothly through
the system.

Dynamic resource-balancing logic
resources such as the GCT and the load miss queue to
determine if one thread is hogging resources. For example,
if one thread encounters multiple 1.2 cache load misses,
dependent instructions can back up m the issue queues,
preventing additional groups from dispatching and
slowing down the other thread. To prevent this, resource-
balancing logic detects that a thread has reached a
threshold of L2 cache misses and throttles that thread.
The other tlhread can then flow through the machine
without encountering congestion from the stalled thread.
The Power3 resourcebalancing logic also monitors how
many GCT entries each thread 1s using. If one thread
starts to use too many GCT entries, the resource
balancing logic throttles it back to prevent its blocking the
other thread Depending on the situation, the Power5
resource-balancing logic has three threadthrottling
mechamisms:

moniters

¢+ Reducing the thread’s priority is the primary
mechanism in situations where a thread uses more
than a predetermined number of GCT entries.

¢ Inhibiting the thread’s instruction decoding until the
congestion clears 1s the primary mechanism for
throttling a thread that incurs a prescribed number of
L2 cache misses.

¢ Flushing all the thread’s instructions thatare waiting
for dispatch and holding the thread’s decoding until
the congestion clears 13 the primary mechamsm for

throttling.

The SMT model: This section briefly describes the SMT
architecture and our SMT simulator. In general, we use
the term thread to refer to a schedulable sequential task
(an independent program or a component of a parallel
program) and the word context to refer to the hardware
structures that hold an executing thread’s processor state.
At any mnstant, a context holds a thread and there are
more threads than contexts.

An SMT processor executes multiple instructions
from multiple threads each cycle. Even with thus
mcreased functionality, SMT can be constructed with

straightforward modifications to a standard dynamically-
scheduled superscalar processor’”. To support multiple
resident threads, several structures must be replicated or
modified. These include per-context thread state (registers
and a program counter), active lists and mechanisms for
pipeline flushing, traps, interrupts and return stack
prediction. In addition, the branch-target buffer and TLB
entries must mclude thread IDs. Modifications of this
nature increased the chip area of Compaq’s recently
announced Alpha implementation of SMT by only 10%,
compared to a similar superscalar design'.

PARALLEL PROCESSING APPROACH TO IMAGE
PROCESSING APPLICATION

In this study we present a method to the bifurcation
of image processing application into three fundamental
layers isolated based on processor
requirements and their functionality. Generally the parallel
computing image processing applications perform parallel
operations by taking additional resource support from
library and packages and create buffering for performing
image PA. The transition of control for creating buffers
and controlling the applications takes a considerable
amount of transfer time which results in slower
processing. We present an approach to enhance the
parallelism by adding the concept of sumultaneous
multithreading over the processor for redundancy the
transition delay in Parallel Computing Image Processing
Application. The Parallel Computer Architecture is layered
into three regions as shown below.

which are

Resource layer
(Support drivers, buffers)

Link layer
(Libtary, DLL, Mex)

Application layer
(C programs, 1/0)

Processor

Resource layer: This layer provides the track of all the
hardware resource requirements such as device drivers,
processing buffers for performing multiple IPA. This layer
commuricates with the application layer via linking layer
to find the requirements of IP applications so as to
allocate processing buffers to carry simultaneous
operations.

Linking layer: This layer provides a link between the
resource layer and application layer which consists of
DLL files and mex files for proper transfer of data between

1139

Asian J. Inofrm. Tech., 5 (10): 1137-1141, 2006

resource allocation unit and computing unit. This layer
hold the library defined and the packages required for
supporting the transactions.

Application layer: Tlis layer reads the input image and
dedicated functions. IPA with support of upper layer.
This layer evaluates the time of computation and the
resource requirement for TPA. A copy of requirements is
transferred to resource layer for allocation of resources.
This layer 1s the User I/F where the user can pass the
mputs to be processed on the image and obtain results.
The transactions in these layers are controlled by the
simultanecus multi threading approach where the
mstructions are latched out into multiple threads and are
executed concurrently. Finally, in Simultaneous
Multithreading (SMT), as in other multithreaded
umplementations, the processor fetches instructions from
more than one thread 4. What differentiates this
implementation is its ability to schedule instructions for
execution from all threads concurrently. With SMT, the
system dynamically adjusts to the environment, allowing
mstructions to execute from each thread if possible and
allowing instructions from one thread to utilize all the
execution umts if the other thread encounters a long
latency event.

RESULTS AND DISCUSSION

The above 1s technique 1s simulated and the results
are tested on a P-III, 1.720Hz with 256MB RAM

Standard test Tmages that are considered: flower,
TUD, obscura, trui, cermet.

We shall now examine how SMT performs on
standard test image flower and compare its performance
with the test image on Fine Grain Multithreading (FGM)
and Coarse Graimn Multithreading (CGM). From the above
Fig. 1 as the number of threads increases by keeping the
image size fixed it shows that the execution time of SMT
based low pass filtering is better then FGM based low
pass filtering and CGM based low pass filtering.

Elements in the processing buffer at the start of each
iteration for image processing iterations of the test images

Image name Entries in processing buffers

Flower 1500

TUD 3800

Obscura 200

Trui Q000

Cermet 10000

Image size SMT{(ms) CGM(ms) FGM(ms)
Bd*6d 20 25 28
256%256 200 220 250
400%400 220 245 260

Comparison of Execution time on various image sizes
The analysis for the following are under
development:

Excution time

Fig.

10.

1140

1 15 2 25 3 35 4 45 5 55 6
No. of threads

1: Execution time of SMT based on FGM and CGM

Tradeoff for image processing operations using
different number of processors.

Speedup of SMT versus Local Neighborhood
Operations, Region Neighbor Operations

Execution for varios Image processing operations
using different number of threds.

REFERENCES

Anderson, D.W. et al., 1967. The BM System/360
Model 91: Machme philosophy
instruction-handling. IBM J. Res. d Deu.
Touppi, N.P., 1989. Architectural and organizational
tradeoffs in the design of the multititan CPU. ISCA,
pp: 281-289.

Radin, G., 1983. The 801 Minicomputer. IBM I. Res.
& Dev., pp: 237-246.

Fisher, J.A., 1981. Trace scheduling: A Technique for
global microcode compaction. IEEE TOC, pp: 478-490.
Lam, M., 1988. Software pipelining: An effective
scheduling techmque for VLIW machines. SIGPLAN
"88, pp: 318-328.

Gottheb, A. et al.,, 1982, The NYU Ultracomputer-
designing a MIMD, Shared-Memory Parallel
Machine. ISCA, pp: 27-42.

Pfister, G.F. et ai., 1985. The IBM Research Parallel
Processor Prototype (RP3):
Architecture. ICPP, pp: 764-771.
Pleszkun, A R. and G.8. Sohi, 1988. The performance
potential of multiple functional unit processors.
ISCA, 1988, pp: 37-44.

Smith, M.D. et al., 1989. Limits on multiple
instruction issue. ASPLOS, Apr. 1989, pp: 290-302.
Sohi, G.S. and 5. Vajapeyam, 1989. Tradeoffs in
instruction format design for
architectures. ASPLOS, pp: 15-25.

and

Introduction and

herizontal

11.

12.

Asian J. Inofrm. Tech., 5 (10): 1137-1141, 2006

Fineberg, S.A. et al.,, 1987. Mixed-mode computing
with the PASM System Prototype. Allerton Conf.
Comm., Con. Comp., pp:

Fineberg, S.A. er al, 1988 Non-Determimnstic
Instruction Time Experiments on the PASM System
Prototype. ICPP, pp: 444-451.

13.

14.

15.

1141

Bronson, E.C. et al., Experimental Application-Driven
Architecture Analysis of an SIMD/MIMD Parallel
Processing System.

Kunkel, 3.R. and I.E. Smith, 1986. Optimal pipelining
in supercomputers. ISCA, pp: 404-411.

Diefendorff, K., 1999. Compaq chooses SMT for
alpha. Microprocessor Report, pp: 13-6.

