Medweu

Onllne

© Medwell Journals, 2006

Asian Journal of Information Technology 5 (11): 1284-12590, 2006

Capacity Based Load Balancing Scheme for Fair Request Dispatching

Tsang-Long Pao and Jian-Bo Chen
Department of Computer Science and Engineering, Tatung University Taipei, Taiwan, R.O.C

Abstract: The load balancing scheme can achieve high performance for the web server. Most of the load
balancing architectures are based on homogeneous web servers. If the backend servers in the system are
different hardware specifications, the load balancing system must have a strategy to evenly dispatch the load
to the backend servers. In this study, we derive a formula to define the capacities for heterogeneous web
servers. In the experimental results, the maximum connection number with certain drop rate can be the
capacities, but it can not get fair response time for each client requests. We must consider the capacities not
only depending on drop rate but also on the response time. Under this definition, the response time for all client

requests will nearly be the same.

Key words: Load balance, heterogeneous web server, capacity

INTRODUCTION

Because of the flourishing development of the
mnternet applications, the services offered by popular web
sites become diversified. Therefore, using one single
server to serve all the requests will be overloaded. Under
such situation, we can use distributed or parallel
architecture to make the website more efficient. The load
balanced web server archutecture can provide high
performance services for large number of clients!™.
Although load balanced servers consist of one or more
servers, they act as a smgle umt. Load balanced servers
offer the advantages of user transparency that allows the
clients to work with multiple servers without any specific
configurationt™.

There are many soluttons for solving the
load balancing scheme, include client-side approach,
DNS-based approach, approach and

dispatcher-based approach™. However, most of the load

server-side

balanced algorithms are focused on the homogeneous
web servers, that 1s, all of the web servers are the same
specification. These web have the
processing powers, memory installation, network speed,

servers same
17O speed, etc™. In the homogeneous web server system,
the dispatcher can redirect the client request to the most
appropriate server based on many well-known criteria,
such as Round Robin or Least Connection. In the
server-state based algorithm!, each web server must
report its loading mformation to the dispatcher. The
dispatcher then selects the best server to serve that
request’™. But in the heterogeneous web server system,

the dispatcher should redirect the client request to the
most appropriate server not only by considering the
loading information but also by the capacity of the server.
In other words, we use the capacity of the web server to
decide which server 1s the most appropriate.

In order to avoid the user perceive latency on the
web server, the capacity of heterogeneous web server
must be well defined that every client request will achieve
the fair response time. As we known, the more powerful
backend server with higher capacity should serve more
requests than others, but the response time maybe still
shorter than others. In this situation, the client request
which was redirected to the poor backend server might
get longer response time. In this study, the backend
server always busy in responding the client requests, so
the backend server should avoid reporting their load
information to dispatcher which will mcrease the load of
the server. In this study, we will derive a formula to define
the capacity which is independent of the server loading
and every client requests will get nearly the same
response time no matter what backend server it was
redirected to.

Related works

Dispatcher-based approach: To centralize request
scheduling and completely control client-request routing,
a network component of the web server system acts as a
dispatcher. Request routing among servers 1s transparent.
The dispatcher uniquely identifies each backend server in
the system through a private address that can be at
different protocol levels, depending on the architecture.

Corresponding Author: Tsang-Long Pao, Department of Computer Science and Engineering, Tatung University Taipei,

Taiwan, R.O.C

1284

Asian J. Inform. Tech., 5 (11): 1284-1290, 2006

We differentiate dispatcher-based architectures by
routing mechamism-packet single-rewriting, packet
double-rewriting, HT TP redirection, or server-based HT TP
redirection!!.

Packet single-rewriting: In some architectures, the
dispatcher reroutes client-to-server packets by rewriting
their IP address, such as m the basic TCP router
mechanism. The web server cluster consists of a group of
backend servers and a dispatcher that acts as an IP
address translation. Figure 1 outlines the mechanism, in
which address 11s the IP address of the i-th web server.

All HTTP client requests reach the dispatcher
because the IP-SVA 1s the only public address. The
dispatcher selects a backend server for each HTTP
request through a Round Robin algorithm and achieves
routing by rewriting each incoming packet’s destination
IP address. The dispatcher replaces its IP-SVA with the
selected server’s TP address. Because a request consists
of several IP packets, the dispatcher tracks the source IP
address for every established TCP connection in an
address table. The dispatcher can thereby always route
packets regarding the same connection to the same web
server. Furthermore, the web server must replace its IP
address with the dispatcher’s TP-SV A before sending the
response packets to the client. Therefore, the client 1s not
aware that its requests are handled by a hidden web
server.

Packet double-rewriting: This mechanism also relies on
a centralized dispatcher to schedule and control client
requests but differs from packet single-rewriting in the
source address modification of all packets between server
and client. Packet double-rewriting is based on the
Internet Engineering Task Force’s Networlk Address
Translator mechanism, as shown in Fig. 2. The dispatcher
receives a client request, selects the web server and
modifies the IP header of each mcoming packet and also
modifies the outgoing packets that compose the
requested document.

HTTP redirection: A centralized dispatcher receives all
incoming requests and distributes them among the web
server nodes through the HTTP’s redirection mecharnism.
The dispatcher redirects a request by specifying the
appropriate status code in the response, indicating in its
header the server address where the client can get the
desired document™. Such redirection is largely
transparent; at most, users might notice an increased
response tune. Unlike most dispatcher-based solutions,
HTTP redirection does not require TP address modification
of packets reaching or leaving the web server system. The
HTTP redirection scheme is shown in Fig. 3.

[

Sever 1
(addreks 1)
/ :
1 (IP-8VA) 4 /C
=] :
2,3 .
Step 1: Docament request (IP-8VA) SN
Step 2 Web-server scleetion (address N)
Step 3; Packet rewriting (IP-SVA-> address 1)
Step 4: Packet routing
Step 5: Packet rewriting (address 1 -»TP-5VA)
Step 6: Document responsc (IP-SVA)

Fig. 1: Packet single-rewriting by the dispatcher

Severl
(address 1)
 —
ILAAM-" 4 R
. v -SVA]
i el W
7 %
~ \
Seva N
Step 1: Document request (TP-SVA) (adiress N)
Stepy 2: Web-aerver selection
Step 3: Packet rewriting {IP-SVA > address 1)

Step 4: Packet routing
Step 5: Packet rewriting (addreas 1 - IP-SVA)
Step &: Document response (IP-SVA)

Fig. 2: Packet double-rewriting by the dispatcher

™
Lall
Sever 1
5 (address 1)
4
h 4 1 A ddreas dispatoher]
P .
R ;
3 2
1: Document request (IP-5VA) \ Sever N
22' W&b—mlﬂhch:f) \ oH)
Siep 3: HITP redirection

Step 4; Docoment reqoest (address 1)
Step 5: Document respanse (addresa 1)

Fig. 3: HTTP redirection

Load balancing algorithms: The load balancing system
makes
be assigned a
balancing algorithms. We will discuss various scheduling
algonthms for selectng backend from the

decisions on which backend server should

new connection based on the load

SCIVErs

1285

Asian J. Inform. Tech., 5 (11): 1284-1290, 2006

cluster for new connections: Round-Robin, Weighted
Round-Robin, Hash, Bandwidth, Least-Connection,
Weighted Least-Comnection and Respond Time™'™. The
first four algorithms are self-explanatory, because they
don’t have any load information about the servers. The
last three algorithms count active connection number or
detect the situation for each server then estimate servers
load based on those connection numbers and server
response time.
Round-robin scheduling: Round-Robin scheduling
algorthm directs the network commections to the different
backend servers in the Round Robin manner. It treats all
backend servers as equals regardless of number of
commnections or response tiume. That 1s, the first backend
server in the group gets the first connection; the second
backend server gets the next connection, followed by the
third backend server and so on. When all the backend
servers 1 this group have received at least one
comnection, the process starts over with the first backend
server.

Weighted round robin scheduling: The Weighted
Round-Robin(WRR) scheduling can treat the backend
servers of different processing capacities. Each server can
be assigned a weight, an integer that indicates its
processing capacity, the default weight 1s 1. In the WRR
scheduling, all servers with higher weights receives new
connections first and get more connections than servers
with lower weights, servers with equal weights get an
equal distribution of new connections. For example, the
backend servers A, B, C have the weights 2, 3, 4
respectively, a good scheduling sequence can be
CCBCBACBA in a scheduling period (mod sum(W1)). The
WRR 1s efficient to schedule request, but it may still lead
to dynamic load mmbalance among the real servers if the
load of requests vary highly.

Hash scheduling: When selecting a backend server, a
mathematical hash of the relevant IP address information
is used as an index into the list of currently available
servers. Any given TP address information will always
have the same hash result, providing natural persistence,
as long as the backend server list 1s stable. However, if a
server is added to or left the system, then a different
backend server might be assigned to a subsequent
session with the same IP address information even
though the original server 1s still available. Open
connections are not cleared.

Bandwidth scheduling: The bandwidth algorithm uses
backend server octet counts to assign sessions to a

server. The dispatcher monitors the number of octets sent
between the server and itself. Then, the backend server
weights are adjusted so they are inversely proportional to
the number of octets that the backend server processes
during the last interval.

Backend servers that process more octets are
considered to have less available bandwidth than those
that have processed fewer octets. For example, the
backend server that processes half the amount of octets
over the last interval receives twice the weight of the
other backend servers. The higher the bandwidth used,
the smaller the weight assigned to the server. Based on
this weight, the subsequent requests go to the backend
server with the highest amount of free bandwidth. These
weights are automatically assigned.
Least-connection scheduling: The Ieast-connection
scheduling algorithm directs network connections to the
server with the least number of active connections. This
1s one of dynamic scheduling algorithms, because it needs
to count active connections for each backend server
dynamically. The backend server with the fewest current
connections 1s considered to be the best choice for the
next client connection request. This algorithm 15 the most
self-regulating, with the fastest servers typically getting
the most connections over time. At a virtual server where
there 1s a collection of servers with similar performance,
the least connection scheduling is good to smooth
distribution when the load of requests vary a lot, because
all long requests will not be directed to a single server. At
a first look, the least-connection scheduling can also
perform well even if servers are of various processing
capacities, because the faster server will get more network
comnections. In fact, it cannot perform very well because
of the TCP’s TIME-WAIT state. The TCP’s TIME-WAIT
1s usually 2 minutes, in which a busy web site often gets
thousands of connections. For example, the server A is
twice as powerful as the server B, the server A has
processed thousands of requests and kept them in the
TCP’s TIME-WAIT state, but the server B 1s slow to get
its thousands of connections finished and still receives
new connections. Thus, the least-connection scheduling
camot get load well balanced among servers with various
processing capacities.

Weighted least-connection scheduling: The Weighted
Least-Connection s cheduling 1s a superset of the
least-connection scheduling, in which a performance
weight can be assigned to each server. The backend
servers with a higher weight will receive a larger
percentage of active connections at any time. The virtual
server administrator can assign a weight to each backend

1286

Asian J. Inform. Tech., 5 (11): 1284-1290, 2006

server and network comnections are scheduled to each
server in which the percentage of the current mumber of
active connections for each server is a ratio to its weight.
The Weighted Least-Connections scheduling works as
follows: supposing there is n backend servers, each
server 1 has weight Wi (1=1,...,n) and active connections
Ci(I=l,...,n), all connection number S is the sum of
Ci1(1=1,...n), the network cormection will be directed to the
server j, in which (Cj/5)/Wj= min{(C¥/S)Wit{i =l,....,n)
Since the S 13 a constant in this lookup, there 1s
no need to divide Ci by S, it can be optimized as
C)/W) = mm{Ci/Wi} (1=1,...,n). Since there 1s no floats in
Linux kernel mode, the comparison of Cj/Wj > Ci/Wi is
changed to Cj * Wi > Ci * W) because all weights are
larger than zero.

Response time scheduling: The response time algorithm
uses backend server response tume to assign sessions to
servers. The response time between the servers and the
dispatcher 1s used as the weighting factor. The dispatcher
monitors and records the amount of time it takes for each
backend server to reply to a health check to adjust the
backend server weights. The weights are adjusted so they
are 1nversely proportional to a moving average of
response time. In such a scenario, a server with half the
response time as another server will receive a weight twice
as large.

System architecture

Server selection algorithm: The proposed load balancing
architecture consists of a selector, a center database
server and a number of heterogeneous web servers. In
order to keep track of the flow between servers and
clients, there must have a log server in our architecture.
The log server is used to check whether the requests are
distributed evenly and we can decide to add new backend
server if needed. In other words, we must make an effort
to achieve the maxinum performance with existing servers
by more sophisticated load balancing algorithm before
adding extra backend servers.

The operations of the system are described as
follows. First, web servers register to the database. The
database server will generate a serverlist table on the
database. When client issues request to selector, the
selector looks up the serverlist table to achieve the most
appropriate server’s IP address. Then selector returns an
HTML document with HTTP header redirection to
indicate the backend server’s IP address to the client.
After client receives the document, it issues the request
to the appropriate web server. The appropriate server
serves the client requests until comnection finished.
Figure 4 shows the processes of server selection
algorithm.

Fig. 4: Server selection algorithm

The definition of capacity: Assume that there are 3
heterogeneous web servers in the load balancing system,
say 5,,5,,3;. We try to define the capacities of these
servers C,,C,,C;. The capacities are the weights of these
web servers. And using the weights in Weight
Distributing Algorithm, we can achieve high performance
and fair client response time.

Capacity measurement: First of all, we must know the
maximum connection of a single server. When defining
the maximum connection of a server, we must define a
threshold that the drop rate 1s below that value. Assume
that the clients issue M requests to the server, the server
will response the request i a certain time mdividually. We
consider that the response time R have p distinct values:
0<R,<R,<... <R <cc. We partiticn the possible values into
n disjont mtervals, {[T=0,T,), [T,T,),..., [T, T,=>)},
where each R will fall in the ith interval [T, ,,T,) and the
connection number for [T,,T) is m, where
m,+my .. +m =M. For user perceive latency, we define the
maximum response time R, as the threshold which is fall
inthe jthinterval [T, ,T)). For each request, if the response
time is higher than the R, then we consider that the
request was dropped. We define the drop rate when the
R, fall in the jth interval as shown in Eq. 1. If the drop
rate 13 under certain percentage, we can obtain the
maximum connection or the capacity for that server
mEq 2.

1
2 <1>
Droprate: D = JM ,where R . fall in the jth interval

i1
Capacity: C = ¥, m;,where R, fall in the jth interval (2
1

1287

Asian J. Inform. Tech., 5 (11): 1284-1290, 2006

for each time intervals {[T,=0,T,), [T;,To),..., [To1, Ti==)}
where the connection number for [T;;,T)) is my
and m;+my+.. +m,=M
the maximum threshold R, is fall in the jth interval [T, ,,T))
Drop rate D=(mjtmy,+...4m,)/M
the minimum threshold R, is fall in the kth interval [Ty, Ty), where k <j
Capacity C=m,+my+...+m,,

Fig. 5: The algorthm for drop rate and capacity

For example, if the total request number is 500
(M=500). The response tune have 10 distinet intervals
1[0,0.25),[0.25,0.5),[0.5,0.75),[0.75,1),[1,1.25),[1.25,1.5),
[1.5,1.75),[1.75,2), [2,2.25), [2.25,00)} and the connection
member for each interval is §120,95,75,65,45,30,25.22 158} .
If we define the threshold as 2 second (R, =2), then the
drop rate D=(15+8)/500=4.6% and the capacity is
C=(120+95+7 5+65+454+304+25+22)=477.

Capacity enhancement for fair response time: We find
that the more powerful server S, will serve more client
requests because we define higher capacity for that
server. But in the figure of response time analysis, the S,
which serves more client requests, still can response
faster than others. It is not fair for user perceive latency.
We need to consider both the drop rate and response time
mn the process of capacity decision making. Using the
same enviromment as above, the drop rate definition 1s still
the same, but we want to modify the definition of the
capacity. Rather than only consider the drop rate, we use
the response time as another parameter to calculate the
capacity. Assume that we define the acceptable response
time R, as the threshold, that means the capacity
definition must under the minimum threshold rather than
the maximum threshold R, If the R, is fall in the kth
interval [T, T,), where k < j. We can re-define the
capacity in Eq. 3.

k-1
Capacity : C = ¥, m;,where R ;, fall in the kth interval (3)
1

For the above example, we define the threshold as 1
second (R,..=1), then the capacity is
C=(120+95+75+65)=355. Under this defimtion, the
experimental results in shows that the client request will
almost got the same response time. The algorithm for the
drop rate and capacity are given in Fig. 5.

Weighted distributing algorithm: Tn this study, we will
show the distributing algorithm we used m the server
selection process. In our load balancing scheme, each
backend server has different capacities. The capacities are
the weights of the server. After obtaining the capacity for
each server, the serverlist table is generated. Figure 6
shows an example.

Server IP
Capacity

d

Server-1 IP

Server-2 IP

servername
serverport
cepacity

totalser

Server-1 IP
Server-1 port

Server-2 IP
Server-2 port
3
0
[

Fig. 6: Example of serverlist table

The IP address of individual web server 1s stored
servername field. The serverport field specifies the TCP
port number of individual web server. The sercount field
stores the correct cormections and the totalser field stores
the total counts of each web server.

When a client issues a request to the selector, the
selector communicates with the database and retrieves the
serverlist table. The selector will run an algorithm by
calculating the value of subtractng sercount from
capacity on each entry and then the selector will choose
the biggest one and return the server’s TP to client. Tf the
values are same, the selector will return the server’s IP
which ranks at the more preceding one. And then add
sercount by one at the selected entry. Until the value of
capacity is equal to sercount on each entry, then the
selector add sercount to totalser and reset sercount to
Zero.

RESULTS AND DISCUSSION

To venfy our proposed architecture can be applied in
the heterogeneous system, we use three servers with
different computational power as the backend servers.
The servers are named S, S, and S,. Table 1 shows the
serverlist Table and Fig. 7 shows the maximum connection
numbers per second of each web server.

Figure & and 9 show the drop rate and the average
response time about these three web servers with
different abilities. On Fig. 7 to 9, we can see that the
high-end web server can handle more client requests at
the same time. Furthermore, the high-end web server takes

1288

Asian J. Inform. Tech., 5 (11): 1284-1290, 2006

Table 1: Serverlist table

Table 2: Comparison of three web servers

Server name CPU

S 1.0G Hz
S, 1.6G Hz
S, 2.6G He

Bl =8
E 350{ *8§

3

Request number

Fig. 7: Maximum connection per second
30%1

25%

Fig. 8: Drop rate

6 '.'Sl
-5,
+*g

Avg. responce time (sec)

Fig. 9. Average response time

little time to response the same number of clients’
requests. Based on the experimental results above, we got
some conclusions on Table 2.

The next experiment is to set the capacity value for
the heterogeneous web servers. The capacity values

Max. request Max. request numbers

numbers - Drop rate is below 5%
- Drop rate is - Average response time
Server CPU below 5% is below 1 second
8y 1 GHz 360 120
Sa 1.6 GHz 440 200
8, 2.6 GHz 520 340

Table 3: Capacity of each web server-drop rate below 5%
Max. request numbers

Server - Drop rate is below 5% Capacity
Sy 360 9
S, 440 11
S 520 13

R S g I I A B P N
N EZHERIBIERAEEER
Request number
Fig. 10: Connection numbers per second-capacity ratio is
9:11:13
2.57 -5
+5,
E 27 *Ss
8 1.5
2
E 14
en
Z
0.54

0 T T T T T T T T

RESE8RRES3358:25g888

——ﬂmmmm-ﬁ-‘rmmlﬂ\n\ah
Request number

Fig. 11: Average response time-capacity ratio 1s 9:11:13

derived from the column of maximum request numbers
under 5% drop rate in Table 2 shows mn Table 3.

Figure 10 and 11 show the experimental results when
the capacity ratio of S;:3,:5; 15 9:11:13. The highest
capacity server 3, can serve more request than the others
i Fig. 10. Although S, can server more requests, the
average response time 1s still shorter than 3, and 3,. In
fact, 1t 15 unfair for users to connect to our load balancing
system under the rule of first come first serve. The reason
1s that we define the capacity value only considering the
drop rate.

We consider both drop rate and average response
time to get new capacity ratio. The new capacity ratio of

1289

Asian J. Inform. Tech., 5 (11): 1284-1290, 2006

Table 4: Capacity of each web server-drop rate below 5%6 and avg, response fairly, each request from users should have the same
time below 1 second

M response time. This study derived a formula to define the
ax. request numbers

- Drap rate is below 5% capacity so that each heterogeneous web server can
:m’er - Avg, res"‘i‘;’sg time is below 1 second C@;‘C‘W serve the client in a certain response time. We adjust the
S; 200 10 capacity of each web server and prove that the method we
8; 340 17 proposed is useful. The experimental results also show

that the system can distribute the requests to the servers

4007 =8, according to their capacities.

5 300-

= REFENENCES

" 250

'\E 1. Mosedale, D., W. Foss and R. McCool, 1997.

§ 150+ Lessons Learned Administering Netscape’s Internet
Site, TEEE Internet Computing.

2. Katz, ED., B. Michelle and Robert McGrath, 1994.
A Scalable HTTP Server: The NCSA Protocol,

RE888gRgsRg83gRgE8 . .
FFHARAIRIIRAREER Proc. Fist International Conference on the World-
Request number Wide Web,
Fig. 12: Connection mumber per second-capacity ratio 1s 3. Cardellm, V., C. Michele and SP. Yu, 2003,
61017 Request redirection algorithms for distributed Web
systems, IEEE Trans. Parallel and Distributed
21 =5, Systems.
ot Iy 4. Cardellini, V., C. Michele and S.P. Yu, 1999. Dynamic
2 1.6 1 .
T 144 load balancing on web-server system, IEEE Internet
B 1.2 Computing, pp: 28-39.
% 11 5. Michele Colajanni, S.P. Yu and D M. Dias, 1998.
g 081 Analysis of Task Assignment Policies in Scalable
::" g':_ Distributed Web-Server Systems, IEEE Trans. Parallel
- and Distributed Systems, pp: 585-600.
i A i s o AR ~T 6. Tsang-Long Pao, Jian-Bo Chen and I-Ching Cheng,
RB228gggseggggaecgge 2004, An Analysis of Server Load Balance
Request number

Algorithms for Server Switching, Proc. Ming-Chung
University International Academic Conference.

7. Xm Lw and A. Andrew Chien, 2003, Traffic-based
load balance for scalable network emulation, Proc.
ACM/IEEE Supercomputing.

8. Schroeder, T., 5. Goddard and B. Ramamurthy, 2000.

Fig. 13: Average response time-capacity ratio is 6:10:17

S1:3:: 8,18 6:10:17 shown mn Table 4 which 1s derived from
the column of average response time under 1 second in
Table 2. Figure 12 and 13 show the connection number

and average response time of these web servers. The Scalable Web server clustering technelogies, TEEE
values of average response time for the three servers are Network.

very close. 9. W3C World Wide Web Consortium, http:/www.
w3c.org.

CONCLUSION 10. Wensong Zhang, Shivao Jin and Quanyuan Wu,

2000. Scaling Internet Services by Linux
In order to implement the load balance architecture of

heterogeneous web servers, there must be an appropriate
distributing rule. For the objective of servicing users

Director, Proc. High Performance Computing in the
Asia-Pacific Region.

1290

