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Abstract: The optical flow field 15 an approximation to the 2D motion field, which 18 produced by projecting the
3D scene velocity into the image. In order to be useful for tasks such as surface structure recovery or the
estimation of viewer or object motion, the optical flow has to be dense and accurate. Optical flow computation
1s an important and challenging problem in the analysis of image sequences. It is a difficult and computationally
expensive task and 1s an ill-posed problem, which expresses itself as the aperture problem. However, optical
flow vectors can be estimated by using regularization methods, in which additional constraints functions are
mtroduced. In this study we propose to improve optical flow estimation by including colour information as
constraints functions in the optimization process. The proposed technique based an a simple matrix inversion

using colour information as constraints functions m the optimization process and 1t has shown encouraging

results.
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INTRODUCTION

A fundamental problem in processing sequences 1s
the computation of optical flow. This flow is a 2D vector
field resulting from a perspective projection on the image
plane of the 3D velocity field of a moving scene. Optical
flow 18 a converient and useful way for image motion
representation and 3D interpretation. Tt often plays a key
role in varieties of motion estimation techmques and has
been used in many computer vision applications. Optical
flow may be used to perform motion detection,
autonomous navigation (knowledge of local motion of the
environment relative to the observer system simplifies the
calculation time-to-collision and focus of-expansion for
example), scene segmentation (segmenting scene into
moving and static objects), surveillance system (motion
can be an important source for a surveillance system
when objects of interest can be detected and tracked
using the optical flow vector to define the future
trajectories), motion compensation for encoding
sequences and stereo disparity measurement! . Optical
flow estimation and computation methods can be
classified mto three mam categories: differential
approaches, block-matching approaches and frequential
approaches!. Despite more than two decades of research,
the proposed methods for optical flow estimation are
relatively inaccurate and non-robust. Many methods for
the estimation of optical flow have been proposed!™***"1,

Optical flow constraint equation: Optical flow can be
computed from a sequence by making assumptions about
the variations of the scene brightness.
assumption', brightness

assumption, 1s represented by the following Eq:

One such

known as the constancy

I(x,y,0) =I(x + 8%,y + 8y, t + 80 I

Where I(x, y, t) represents the luminance function at
pixel (x, y) at time t and (8x, &y) is the displacement
occurring at pixel (x, y) during &t.

We perform a Taylor development limited to the first
order and we get:

31 31 3l 4]
Ixyv.ti=I(xy.t)+ —0x+—8y+—
(x,y,1) (XY)SXXSny‘)t

Cancelling I(x, y, t) on both sides and dividing by Jt
(ot = 0) we obtain:

LutIv+I =0 3

Where:

L. I, and I, are first partial derivatives of I respectively with
respect to x, y and t and u and v are the optical flow
components respectively in the x and y directions.
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Equation 3 is called optical flow constraint equation.
Tt provides only the normal velocity component (aperture
problem). The system is undetermined because we only
have one equation for two unknowns. To overcome this
problem, it 1s necessary to add an additional constraint.

Horn! adds a smoothness constraint based on the
assumption that neighboring points of the same object
will have similar velocities. This involves the computation
of secondorder differentials. The goal is to minimize the
sum of the total errors throughout the
whole image:

al(I, +1, + 1) +(Viu+ Viv)* “@

The first term expresses the error due to the change
mn image intensity and the second term relates to the
change in velocity.

An alternative formulation due to Lucas and
Kanade,"" tries to minimize the error for a certain region R.
It is categorized as the local methods by!l.

The error expression is:

min' Y, W[ Vige)v+ L] ®
Xeld
In a considered neighbourhood, we have:
ATWiAv =AW ©®
Where for n pixels x; € Q:

A=[VIx) - Vix,)]"
W = diag[Wix,),...W(x,)] 0
b=[I,(x,),...1,(x,)]

They apply the second order differential as the
weight W(x) to reduce the effect of those pomts where
F(x) 1s far from linear. They also suggest that an iterative
estimation of velocity and a coarse-fine searching can
produce more accurate result.

Hom’s method assumes temporal sampling rate is
high enough for small spatial neighbourhood to work well,
Lucas and Kanade’s method is big improvement because
1t can use arbitrary region size which really helps when
displacement is large. In order to obtain accurate first
and second order differential, the input has to be highly
over-sampled and the intensity through out the image is
near linear!".

These solutions are applied only to the grey
sequences where the pixels mtensity is represented by a
single function which values are in [0:255].

Use of colour information as additional constraint: The
brightness assumption inplies that the (R, G, B)
components of each image remain unchanged during the

motion  undergone  within a small temporal
neighbourhood”. Therefore, R, G and B images can be
used in a similar way as the luminance function: they have
to satisfy the optical flow constraint equation. Markandey
and Flinchbaugh™ have proposed a multispectral
approach for optical flow computation. Their two-sensors
proposal is based on solving a system of two linear
equations having both optical flow components as
unknowns. The equations are deduced from the standard
optical flow constraint (3). In their experiments, they used
colour TV camera data and a combmation of infrared and
visible images. Finally, they used two channels to resolve
the ill-posed problem™.

Golland and Bruckstein™ follow the same algebraic
method. They compare a straightforward 3-channels
approach using RGB data with two 2-chammel methods,
the first based on normalized RGB values and the second
based on a special hue-saturation definition. The standard
optical flow constraint may be applied to each one of the
RGB quantities, providing an over determined system of

[13].

linear Eq.

Riu+Rv+R, =0
Gu+G,v+G, =0 &
Bu+Bv+B =0

Then the pseudo-inverse computation gives the
following solution for the system:

V=(AT.A)ATD ©
Where:
R, R, R,
A=|G, G, |..b=|-G, .and.V=
B, B, -B, (10)

{u}opﬁcal.ﬂow.vector.
v

This assumes that the matrix (A™A) is non-singular.
By defimition this matrix 1s singular if its rank 1s equal to 1,
1e. its columns or lines are linearly dependent, which
mean that the first order spatial derivatives of the colour
components (R, G, B) are dependent. Since the sensitivity
functions Dr(A), Dg(4) and Db(A) of the light detectors are
linearly independent, the first derivatives of the R, G, B
functions will also be independent for images sequence
with colour changing in two different directions. But if the
colour 1s a uniform distribution, the (R, G, B) functions are
linearly dependent or if the colours of the considered
region change m one direction only, the gradient vectors
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of (R, G, B) are parallel so that the spatial derivatives are
dependent and the matrix (A'A) is singular.

To improve this problem, the idea 15 the use of two
mdependent functions for colour characterization so that
their gradient directions are not parallel. The ideal case is
obtained when the gradient directions of the two chosen
functions are normal. One possible solution is the use of
two different colour systems: the normalized RGB system,
denoted rgb system and the HSV system*'?,

The rgb system is computed in the following way:

g:L ..... where: .r+g+b=1 (1)

Tt is clear that any pair of (r, g, b) forms a system of
two independent functions. If we are taking the r and g
components, the optical flow computation system to be
solved 1s given by Eq. 5, where:

L5 I
b= and..
gx gy _gt (12)

u
{ }..opﬁcal.ﬂow.vector.
v

A

v

If we consider the HSV system, we will have a similar
system mnvolving H and S mstead of r and g.

Proposed method for optical flow computation: It was
shown that a colour sequence could be straightforwardly
considered as a set of three different sequences produced
by three types of light sensors with different sensitivity
functions in response to the same input sequence™®. So
we propose to use the same formulation as those
proposed by Hom and Schunck for the luminance
function and to apply it to the three colour components.
In the first stage we have to minimize a function
containing the three colour components, each component
satisfying the optical flow constraint equation without
any smoothness term:

F:.(R uU+R v+ R )2+.(G u+G v+ G )2
X ¥y t X ¥y t
_ 2 (13)
n +.(Bx.u+By.v+Bt)

The problem will be posed as finding (u, v) optical
flow components minimising F. By deriving F respectively
to u and v and equalizing to zero we have the simple
solution by using the mverse method to compute the
optical flow components:

V=A"b (14

Where:
{R1+G§+Bi RXRy+GXGy+BXBy}
R,R, +G,G,+B,B, R, +G;+B; 15)
_ b_{RXRﬁGXGﬁBXBt}
’ R,R,+G,G,+B,B, |

In the second stage we add a local (on a small region
around each pixel) smoothness term on the magnitude of
optical flow vector with a weight ¢. The motion of any
object between two following times (t, and t, + dt
where dt — 0) is supposed to be very small and it can be
used as a small displacement in any direction. So Eq. 9
with the smoothness term will be:

F=(Ru+R v+R ) +(Gu+Gv+G,)
1
MIN| FBut By + B+ ol V] (16)
U,V 2
=e; te,testel
The same solution i1s found when adding the
smoothness term in the function F to minimize. This
solution is obtained by using only the matrix inversion
method; we have the following matrix for this study:
B {Ri +G.+Bi+o’ R.R +G,G,+BB,
- H 2 2 2
R,R, +G,G,+BB, RI+G +B +a

n {RXRt +G,G, + BXBt}
’ R.R,+G.G +BB, |

} (17

We do not use iterative method to compute the
optical flow components and the proposed method is only
based on the function optimisation and matrix inversion.

RESULTS

In the implementation of all studied methods, the
images of R, Gand B, randg and H and S are obtaimned
from the brightness function of images sequence (R, G, B).
The first order derivatives of the sequence functions are
computed by using the (1/12)(-1, 8, 0, -8, 1) kemel. We
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used a 5X5 neighbourhood, where each line was a copy
of the estimation kernel mentioned above. For the
computation of temporal derivatives, a 3X3X2
spatiotemporal neighbourhood was used.

+  For the four test sequence, grey scale sequence, we
present the results with Hom Schunck and Lucas
Kanade Fig. 1-3.

¢+ For the Tennis sequence, grey scale sequence we
applied the Horn-Schunck algorithm with it’s two
versions Fig. 4 and 5.

* For the synthetic sequence, colour sequence, we
applied the proposed method with it’s versions
Fig. 6 and 7.

Fig. 1. Four sequences test. a) SRI : Camera right
translation 2 pixels/frame. b) NASA: Camera
moves 1 pixel/frame. ¢) Rubik cube: Cube and its
support  rotation 0.2 to 2.0 pixels/frame.
d)Hamburg taxi: Four moving objects-taxi, car, van,
and pedestrian par 1, 3, 3, 0.3 pixels/frame

Fig. 2 : Hom-schunck results (A =2, 0=13)

Fig. 3: Lucas-Kanade results ( Q = 5*5et A =1.0) results
(A=2,0=3)

Fig. 4: Tennis sequence

Fig. 5. Optical flow a) Horn Schunck b) Horn Schunck
with smoothness term without smoothness term
CPU time 1.922s CPU time 1.812s

Fig. 6: Synthetic sequence a) Using rgb space. b) Using
HSV space. ¢) Using RGB space. d)Usmng RGB
space with smoothness term (A=3)

1335



Asian J. Inform. Tech., 5 (12): 1332-1337, 2006

Fig. 7. Optical  flow results

method

with the proposed

Fig. 8: Perversi sequence

Fig. 9: Optical flow results a) Our methed b) Hom
Shunck CPU time 2.313s CPU time 2.531s for 5

iterations

¢ For the Perversi sequence, colour real
sequence, we used the combination of RG
and B to form the intensity function for
applying Horn Schunck  algorithm  with
smoothness term  compared with the RGB
proposed  method with  smoothness  term.
Fig.8,9.

CONCLUSION

The proposed method is fast in computing and has a
simple implementation. But it requires the presence of
significant gradients of the colour functions. If the
gradient magnitude of these functions is too small (=0),
our method as any gradient-based method would fail to
give reliable results. This implies that all differential
methods are not reliable when the scene contains objects
with uniform colour.
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