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Abstract: The problem of the optimisation in distributed systems had taken an important place for the
estimation of the detection threshold. As a result, a big variety of mathematical methods are proposed in
literature, 1n an attempt to achieve the optimum without any prior assumptions. Recently Genetic Algorithms
(GAs) were proposed and processed as an optimization tool for a large variety of domains. We propose in this
study, an optimization of the CFAR (OS-CFAR and CMIL-CFAR) threshold by an EMS-GA in non homogeneous
backgrounds, for which the environment is characterized by the presence of interfering targets. The EMS-GA
was applied to estimate the order statistic (K) and the multiplied factor (T) in a distributed system that contains
more than one detector, then the performance of such method is analysed in different situations of multiple
targets case. In spite of the efficiency and flexibility of the GA to resolve such problems the CML-CFAR system
has given best results over the OS-CFAR system. In the other hand the overall probability of detection was
largely influenced by the presence of mterfering targets and the best results were found in the case of the OR
fusion rule on a wide interval of SNR (Signal to Noise Ratio). The increase of the number of detectors in a
distributed system improves its performance and the quality of the detection is affected in the sense of an
mcrease of the detection probability m a critical situation with a presence of big number of interfering targets
that saturate all the detectors.
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INTRODUCTION

Distributed sensor systems were originally motivated
by their applications in military surveillance, with respect
to command, centrol and commumcation. But in recent
vears, they are being employed n a wide variety of
applications and their utility has spurred great research
interest in this topic!. The parallel and the serial
architectures for distributed detection systems
discussed inl?.

The problem of decision in distributed sensor
systems, assuming that the sensors decisions are
mdependent from each other, was considered by
Thomopoulos et al'”. This study provided a general
proof that the optimal decision scheme which maximizes
the probability of detection at the fusion centre, for a fixed
false alarm probability, consists of a Neyman-Pearson test
at the fusion centre and a likelihood-ratio tests at the
local sensors.

In practical radar signal detection systems, by using
a fixed threshold, a weak increase mn the total noise power
results in a corresponding increase of several orders of
magnitude in the probability of false alarm. This
undesirable increase, leads to steer for an adaptive

arc

threshold techmques i order to maintain a Constant
False Alarm Rate (CFAR). A configuration of a CFAR
processor is represented in Fig. 1.

In literature, the CFAR detection problem has been
studied extensively for both homogenous and non
homogenous backgrounds™?. At the CFAR detector, the
threshold is set adaptively, based on the noise power
level estimated from the surrounding cells of the test cell.

Also, distributed detection systems have been
largely considered because of their capability to improve
reliability, speed and to handle a large area of coverage.
As a matter of fact, the distributed CFAR systems with
fusion centre have been receiving a lot of attention by a
big number of studies. Begging with Barkat and
Varshney', who have developed a first attempt for the
theory of CA-CFAR detection using two sensors with
data fusion, according to the "AND" and the "OR" fusion
rules, in homogenous environment. The results have
showed an improvement of the performance in distributed
multiple sensor systems with data fusion, over a smgle
sensor system. However m homogenous
environment, where noise and clutter powers at each
distributed sensor are unknown and possibly varying, the
CA-CFAR detection performance, degrade considerably.

1orn

Corresponding Author: Latifa Abdou, Département d’ Automatique, Université de Biskra, Algeria
1427



Asian J. Inform. Tech., 5 (12): 1427-1433, 2006

R

| |—X

Decision
T: Scale factor

Fig. 1: CFAR detector algorithm

So 1t became inadequate in region of clutter edges and
closely spaced multiple targets environment. Rohling
proposed in'”? the Ordered Statistics (OS-CFAR) detector
that takes an appropriate reference cell to estimate the
background clutter power level To estimate the
performance of CFAR detection in both homogenous and
non homogenous background, Uner and Varshney™?
developed a comparative study between the CA-CFAR
and the OS-CFAR, i which they showed that in non
homogenous case and for several scenarios, consisting of
multiples targets and clutter-edges environments, the
performance of the distributed CFAR improves
dramatically 1if the distributed OS-CFAR system 1s used
wstead of the distributed CA-CFAR detection system. For
the situation of multiple targets, the Censored Mean Level
Detector (CML-CFAR) is a detector in which the largest
noise samples are censored and the noise level estimation
15 obtamed by the remaming noise samples. For a fixed
nmumber of interfering targets, the detection performance
of the CMIL-CFAR is robust than the performance of the
OS-CFARM.

The problem of the threshold optimization represents
an important part of the global problem toward the
mmprovement of the quality of detection and many
mathematical methods were proposed in literature. Among
them we can find the Newton method and the Conjugate
gradient method, in which only one of the parameters to
optimize is fixed and the others are varying. In such way
an important disadvantage 1s encountered by which the
solution may be far from the global optimal.

At the present time, heuristic techniques including
G As are showing their efficiency for solving optimization
problems in many areas. However this efficiency 1s widely
depending on the computational complexity of the
problem, the reproduction manner (schemes of crossover)
and therefore the replacement methods to run toward the
best sclution. In™ Lieu and al have proposed a flexible
approach employing a GA to both the CA-CFAR and the
0S-CFAR detectors in homogeneous environment. This
study showed that the application of GA is much more
effective compared to other methods usimng either
exhaustive search or some crude approximations. Also

in"” we have considered a solution based on three kinds
of GA (BMW, AFP and EMS) for two methods of
replacement, for the OS-CFAR and the CML-CFAR
detectors, 1 a distributed system that contains 2, 3 and 5
detectors. This work had showed that the EMS-GA was
more flexible to generate the best solution in a distributed
system.

To our knowledge, all previous works on the
application of GAs have being proposed for the
homogeneous case of study. We propose in this worlk to
analyze the efficiency of the EMS3-GA to improve the
performance of a distributed system for both “AND™ and
“OR” fusion rules in non homogenous backgrounds, by
integration of interfering targets in a homogeneous
environment. Assuming Rayleigh target, for a case with
independent observations from sensor to sensor, an
EMS-GA scheme of crossover had been applied with
elitist deterministic method of replacement.

In the next study, we describe the OS-CFAR and
CML-CFAR processor in non homogeneous background.

Cfar processor in nonhomogeneous backgrounds: A
CFAR detector contains a number (N+1) of cells, divided
into two references windows. The leading (N/2) cells and
the lagging (N/2) cells containing samples that are
processed to estimate the total noise power. In the middle
of the detector there 1s a test cell whose sample allows
making a decision, by a comparison with the adaptive
threshold obtained by the multiplication of a scale factor
(T) and the estimated total noise power. In the OS-CFAR
processor, the reference window cell samples are first rank
according to increasing magnitudes as:
Xy <Xo €= Xgy = <Xy » in order to select K*

ordered

ordered value, X, as the statistic Z that estimates the
background noise. This estimate 1s multiplied by a
constant (T) to yield the adaptive threshold against which
the output of the cell under test will be compared.

We assume that the target in the test cell 1s slowly
fluctuating Swerling type I model. So the probability
density function of the out put of the square law detector
is given in*! by:

F(x)=(1/2h)exp(—x/2h) x20 @

The detection may be done into two different
situations either m homogenous or non homogenous
background environment. In the first case, under
hypothesis H, (absence of target in the test cell), A is the
total background clutter-plus-thermal noise, denoted by

0. Under hypothesis H, (presence of target in the test
cell), A 1s 0 (1+S) where S 1s the SNR.
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Ina CFAR processor, the probability of false alarm P;
and the probability of detection P, are given by:

B, = j: Pr(Y » TZ/Z,Hy ), (Z)dZ @

And
Py = [ Pr(Y » T2/ 7, Hy)f,(2)d7 &)
Respectively, where 18 Pr(Y»>TZ/Z H;) the

conditional probability of Y>T.Z givenZ and H,, 1=0, 1
and £(7.) is the pdf of Z, the estimate of total noise power.
In a non homogenous background, the reference window
samples are no identically distributed and this non
homogeneity is generally represented by the two different

situations!".

Clutter-edge case: Clutter edges 13 linked to the case
where only thermal noise appears in some of the reference
cells with 4 = 0 = g, and the remaining reference cells have
clutter-plus-thermal noise with A = ¢,(1 + C), where C is
the clutter-to-thermal Noise Ratio (CNR). It 1s assumed
that there is only one type of clutter in the reference
window.

Two scenarios will represent the clutter-edge
first one, it is assumed that the
clutter-edge is parallel to the beam direction of the Local
Detector 2 (L.D2), which means that the T.D2 always

observes a homogenous background while the 1.D1

situation. In the

observes the clutter-edge m its reference window. The
second scenario represents another form of situation, in
which the clutter-edge was assumed to be parallel to
the straight line joining the two local detectors so that
both

clutter-plus-noise samples m their reference windows.

local detectors observed the same number of

Multiple-target case: The multiple targets in a non
homogenous environment, is a situation in which
interfering targets appears in the reference window. In this
case, it is assumed that the background is
homogenous and it consists of either only thermal noise
or clutter-plus-thermal noise. Also the amplitudes of all
mterfering targets fluctuate according to the Swerling
type I and the parameter A 1s equal to o(1+1) where 0 15
the total noise power and I 1s the mnterference-to-total
Nowse Ratio (INR). In the multiple targets case, the
estimate of the background noise power level 1s higher
than its actual values and which leads to an increasing of
the local threshold value and then results in a decreasing
of the false alarm rates. Also the global P, and P;
decreases, resulting in the so called masking effect.

Genetic algorithms: Researchers into the application of
(G As and simulated annealing have grown more numerous
in the past few years. Holland!" laid the foundation of
GAs with the goal to create computer algorithms by
simulating the characteristics of a natural system. It was
intended that, if nature can produce from a random
population, a population with individuals that are better
fit to the environment it i1s possible to develop an
algorithm to solve complex problems by utilizing the
concept from nature. A GA randomly generates a set of
possible solutions to the problem which is being
investigated. This is termed the initial generation of
solutions (chromosomes), advanced by the conventional
genetic operators and each successive incremental
improvement 1 a solution structure becomes the basis for
the next generation. Standard GA consists of three
main operators: Selection, crossover and mutation.
The selection 18 used to detect which individuals,
of the current population will be authorized to reproduce
(the parents). In lLterature a variety of schemes of
selection were proposed among what, the EMS-GA
{BEmperor Mate Selective)™. In this crossover scheme the
best individual gets to mate with every other even sample
in the population. The evaluation, that consists to
calculate (or estimate) the quality of the individuals
already created 1s based on the optimization of the fitness
function The transition from one generation to other 1s
done throughout the replacement methods. The usual
methods consist in maintaining a given percentage of the
best individuals, of the current population in the following
population. 'We mention here that the method used for
the replacement 1s the elitist deterministic one, consisting
in managing the elitism by the means of the best
individuals of the current population and the best
individuals of the descendant population.

SIMULATION RESULTS

We have considered mn this paper two different
distributed detection systems consisting of OS-CFAR and
CML-CFAR local detectors, using the “AND™ and the
“OR” fusion rules, in non homogeneous background
conditions (multiple targets situation). We have analyzed
the performance of these systems in different situations,
in the sense of the number of the interfering targets in
each local detector. Assuming Rayleigh targets, the
detectors are mnon identical with independent
observations.

A computation of the threshold i1s done with an
EMS-GA by using the fitness function defined as:

Fitness(N,k,T) =abs(1-P,)+ iabs(pf —ay) @
Oly
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Fig. 3: P, performance in case of interfering targets: LD1:2
and LD2:2

Where P, and P are the global probabilities of detection
and false alarm respectively, N 1s the nmumber of estimation
cells at the local detector, K 1s the rank order and T is the
detection threshold for a fixed P;equal to 10*. The initial
population, 1ncluded 100 random chromosomes 1s
generated for N =12 and N ;16 and a vanation of the
other parameters K and T. A linear crossover is performed
for a probability P, = 1 and a Gaussian mutation with a
probability P = 0.1 by using a discrete crossover for K
and an arithmetic one for T.

The first application represented by Fig. 2 was
dedicated to a comparison between the “AND” and the
“OR” fusion rules i homogeneous environment. This
results showed an improvement of the performance for the
“OR” fusion rule in relation to the “AND” fusion rule on
almost all the interval of the variation of the SNR. Though,
before SNR equal to 5, the performance 1s reversed with
a slight difference between the two rules.

—
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Fig. 4: P, performance i case of interfering targets: LD1:2
and LD2:5

The next application is linked to the assumption of a
non homogeneous background with the presence of
interfering targets and the performance of the P, of the
system is analysed for five different situations. Here the
test cell and interfering targets were assumed to have the
same average power (3/1=1).

We represent here three cases of these five tests. In
Fig. 3 it was assumed that the two detectors L.D1 and 1.1D2
observed 2 interfering targets within their reference
window. Always the “OR” fusion rule performs better
with a slight degradation of the probability of detection
which do not seem to be noticed between the two layouts.

The saturation of one detector is supposed for the
second detector LD2 with the assumption of 5 mterfering
targets and the first detector LD1 observed 2 mterfering
targets as represented by the Fig. 4. The degradation is
more observed than the previous study for the two fusion
rules, with a conservation of the superionity of the “OR”
fusion rule and also the difference between the two rules
is bigger than previously.

At last, in Fig. 3, the two detectors LD1 and T.D2 are
saturated with observing 5 interfering targets in their
reference windows. And the degradation m this situation
is more considerable linked to the fact that the two local
detectors are saturated and thus they are more affected by
the number of interfering targets.

In order to show the influence of the number of
interfering targets on the P, performance of the distributed
system, we have compared all the tested situations for
each fusion rule. For the “AND” one, by increasing the
number of interfering targets in the reference window the
performance degrades more as represented in Fig. 6.
Nevertheless, for the “OR” fusion rule the difference of
the last situation and the other cases 13 very remarkable.
Also we can notice that there 1s an intersection between
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Fig. 7. Comparisen between different cases of mterfering
targets for the OR fusion rule

the layout of the second situation (LD1:2; LD2:2) and the
forth one (LD1:5; LDZ:0) nearly the value SNR = 10,. So
the P, of the forth situation is better than the second

077 voee (OR: 3 sensors)
—— (AND: 3 sensors)
0.61 ——— (OR: 2 sensors)
b ———— (AND: 2 sensors)
E 051
g 0.41
L
2
E 0.24
0.14
04

Fig. 8 Comparison between 2 sensors and 3 sensors
OS-CFAR systems for case: LD1:5 and LD2:5

before this value and better than the third situation on the
total interval of SNR Fig. 7.

In the previous steps, we have considered a system
that contains two local detectors, so to verify the
advantage of a distributed system and the influence of the
number of detectors in such systems and also because
the optimization here is done by genetic algorithms that
resolve the problem of global optimization in systems that
contains more than two detectors, we propose as a test,
a graph of P, performance for a system that contains three
local OS-CFAR detectors (N,=12; N,=16 and N;=14) for
the last case of interfering targets, represented in Fig. 8.

This application has showed that the addition of one
detector to the previous system has largely improved the
quality of the detection with a remark concerming the
superiority of the “OR™ fusion rule toward the “AND”
fusion rule which occurs after an SNR value of 104

The second system performed in this paper contaimns
two CML-CFAR local detectors. The same steps of work
as the previous one are considered. The first remark in the
case of a homogeneous environment, as represented in
Fig. 9, 1s that the superiority of the “OR™ fusion rule 1s
conserved. We can also notice that the results in the case
of the CML-CFAR are better, with better values of P, for
the same SNR, so that for O P, 1s positive. Also there is
an inversion in the layouts at the beginning of graph
instead for the OS-CFAR system.

Also for different situations of interfering targets, the
performance of the global probability of detection is
drawing Fig. 10-12 and the degradation of P, 1s less clear
than in the case of the OS-CFAR system. In the last case
in which the two local detectors are saturated, we can
easily notice that the intersection point between the
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Fig. 11: P, performance in case of interfering targets:
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layouts of the “OR” and the “AND” fusion rules and by
which there 1s an mversion of the performance, 1s
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Fig. 14: Comparison between the different cases for the
AND fusion rule

The comparison between the five situations tested in
thus study for the CML-CFAR system for each fusion rule

is represented by Fig. 13 and 14. The main idea given by
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systems for case: LD1:5 and LD2: 5

the last results is that the CML-CFAR system performs
better than the OS-CFAR system, as represented by
Fig. 15 which shows the difference between the two kinds
of systems in the case of the saturation of the two local
detectors.

CONCLUSION

In this analyse, we have compared the performance
of two different distributed CFAR systems, composed in
one case by OS-CFAR local detectors and in the other
case by CML-CFAR local detectors. The fusion centre 1s
considered for both the “AND” and the “OR” fusion rules
with non identical local detectors. In non homogeneous
background for which the number of cells covered by the
interfering targets changed, we have proposed several
situations. The optimization of the two parameters K and
T is done by an EMS-GA with using a Gaussian mutation
and an elitist deterministic replacement.

The results had showed that in spite of the flexibility
of the GA to estimate the parameters, the situations
proposed for different number of interfering targets in the
reference windows influences largely the quality of the
detection. Also a more considerable degradation 1is
observed in the case of the saturation of the detectors,
when the mumber of cells affected by interfering targets
exceeds the order K.

The main conclusion showed in this paper is that the
distributed system performs better when the number of
detectors 1s mcreased and so in such problems it is
important to have adequate optimization methods that
may give a global optimization for a system that contains
more than two detectors. In this way the GA have
presented a big flexibility mentioned by the results of the
three OS-CFAR local detectors system. In the other hand,
a comparison between the OS-CFAR system and the
CML-CFAR one for the critical case in which the local

detectors are saturated by a number of interfering targets,
has showed a remarkable improvement in the quality of
the detection, by an increase of the P, in the case of the
second system over the case of the first one in a
considerable SNR variation mterval.
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