Asian Journal of Information Technology, 5 (2) : 145-154, 2006

© Medwell Online, 2006

Coordinating Heterogeneous Information Flow Control Models

Shih-Chien Chou
Department of Computer Science and Information Engineering,
National Dong Hwa University, Hualien 974, Taiwan

Abstract: A complicated software system can be decomposed into subsystems for different teams to develop,
i which the teams may distribute geographically and need not belong to the same company. Many 1ssues
should be solved when developing software systems n this manner. For example, developing a software system
that can prevent information lealkage during the execution of the systems is an essential issue. The prevention
can be achieved by embedding an information flow control model in the system. Since the teams that develop
a software system need not belong to the same company, different teams may be familiar with different
mformation flow control models. To embed information flow control model in a complicated software system
decomposed into subsystems, the following approaches can be used: (a) embedding the same information flow
control model in every subsystem and (b) allowing different information flow control models to be embedded
mn different subsystems. If the first approach is used, software developers unfamiliar with the assigned model
may be unwilling to use the model. Moreover, if a software system 15 developed through reuse, the reused
components may be embedded with different information flow control models. This causes difficulty in the
reuse. We suggest that the second approach should be used and propose a model TFCMC (information flow
control medel coordmator) to coordinate heterogeneous information flow control models. This study proposes

IFCMC and its evaluation.

Key words: Information security, prevent information leakage, information flow, information flow control,
coordinate heterogeneous information flow control models

INTRODUCTION
To develop complicated software system,
decomposing the system mto subsystems and then
assigmng the subsystems to different software

development teams iz an acceptable approach. The
development teams can distribute geographically and
In thus
development approach, many issues should be solved.
This paper discusses information leakage prevention
during the execution of a software system developed
using the approach. The prevention corresponds to
avolding users n low security levels to access
information in high security levels. For example,
customers should be lkept from accessing sensitive
mformation that can only be accessed by managers. A
model for the prevention is a language-based model™
because the model should be embedded in a language to
implement a secure software system.

Preventing mformation leakage within a software
system can be achieved through information flow
control. Many information flow control models have been
developed®™. An information flow contrel model can be
embedded software system during software
development. The model will prevent information leakage

need not belong to the same company.

m a

145

during the execution of the system. Information flow
control models are based on the generic concept security
levels because the models prevent users in low security
levels from accessing mformation in Ahigh security levels.
The generic concept can be unplemented using various
mechanisms such ag access control matrixes®!, labels?*,
access control lists"! and lattices®™ . In other words, the
generic concept security levels 1s the base of an
information flow control model no matter what mechamsm
implements the concept.

Having clarified the concept of security levels, we
describe the concepts of information flow, information
leakage and information flow control used m thus paper.
Describing the concepts is necessary because different
models may use the same terms for different meanings.

An information flow occurs when the content of a
variable or the result of a computation is sent to a
variable, an output device, an output file, or
communication media among software systems (e.g.,
shared vanables, files and network).

b. Information leakage refers to leaking information to
a user that is not allowed to access the information.
Here a user may be a person or another system.

Information leakage may happen when information

Asian J. Inform. Tech., 5 (2) : 145-154, 2006

that cannot be accessed by a user is sent to a
variable, an output device, an output file, or
commumnication media that can be accessed by the
user.

c. Information flow control refers to controlling the
flows of information to prevent information leakage.
For example, suppose the variable a can be accessed
by every customer of a bank and the wvariable b
contains the password of a customer that can only
be accessed by the bank’s president. Then, blocking
the statement a = b; 1s a kind of information flow
control.

As mentioned above, many information flow control
models have been developed. Existing models offer more
or less attractive features such as purpose-oriented
method invocation!*'¥, declassification™™ ¥ and avoiding
Trojan horses™™”. Nevertheless, the ultimate goal of an
mformation flow control model 1s to prevent information
leakage during the execution of a software system. Let’s
continue the discussion of the prevention within a
complicated software system. As described in the
beginmng of this section, software development teams
that develop a complicated software system may
distribute geographically and need not belong to the same
company. In this case, different development teams may
be familiar with different information flow control models.
To embed an mformation flow control model m a
complicated software system decomposed into
subsystems, the following approaches can be used.

a. Requiring the software development teams to embed
the same information flow control model in the
subsystems they develop.

b. Allowmg different teams to embed different
mformation flow control medels in the subsystems
they developed.

If the first approach 1s applied, software developers
unfamiliar with the assigned information flow centrol
model should be trained to use the model. Tt is possible
that the developers are unwilling to use a new model,
which results in serious management problems. Moreover,
1t 1s possible that a software system 1s developed through
reusing existing software components that are embedded
with information flow control models different from the
assigned one. If the first approach is used, the reuse is
not allowed. According to the above description, we
suggest that the second approach should be used. Since
different information flow control models are incompatible
mn general, coordinating heterogeneous mformation flow

control models becomes an essential issue. In the

146

coordination, coordination information should be added
to every subsystem. Nevertheless, the information flow
control model embedded in a subsystem should not be
changed.

We developed a model to coordinate heterogeneous
information flow control models for object-oriented
systems. It 1s based on access control list (ACL) and
named IFCMC (information flow control model
coordinator). This paper presents TFCMC and its
evaluation.

RELATED WORK

We have involved in the research of information flow
control for years™™™ Since we camnot identify a model
that coordinates heterogeneous mformation flow control
models, we cannot compare IFCMC with existing models.
Nevertheless, we describe some information flow control
models below for readers’ reference.

Traditional access control 1s achieved by access
control matrix (ACM)™". A subject can access an object if
the required access right appears in the matrix. ACM
allows only static access control™ ™. On the other hand,
DACM (dynamic access contrel matrix)™ allows dynamic
access right allocation.

Mandatory access control (MAC) is useful in access
control. An important milestone of MAC 1s that proposed
by Bell and LaPadulal”. It categorizes the security levels
of objects and subjects. Access control follows the no
read up and no write down rules™ *!. Bell and LaPadula’s
model has been generalized into the lattice model®'"
(see[34] for a survey of lattice models). As described n
section 1, the typical lattice model proposed in™*! uses the
can flow relationship to control information flows and the
join operator to avold Trojan horses.

The model in'"! contrels information flows in object-
oriented systems. Tt uses ACLs of objects to compute
ACLs of execution. A message filter is used to filter out
Smee the
computation of an execution’s ACL takes information
propagation into consideration, Trojan horses are
avoided. The model uses different modes of information
flow control to loosen the restriction MAC. Flexibility 15
added to the model by allowing exceptions during or after

method execution*'¥. More flexibility is added using
[25]

possibly non-secure information flows.

Versions

The purpose-criented model! proposes that
invoking a method may be allowed for some methods but
disallowed for others, even when the invokers belong to

16-18]

the same object. This consideration is correct, because
the security levels of an object’s methods may be
different™. Different methods

can thus access

Asian J. Inform. Tech., 5 (2) : 145-154, 2006

information in different security levels. The model uses
object methods to create a flow graph, from which non-
secure mformation flows can be identified.

The decentralized label approach”” marks the
security levels of variables using labels. A label is
composed of policies, which should be simultaneously
obeyed. A policy ina label 1s composed of an owner and
zero or more readers that are allowed to read the data.
Both owners and readers are principals, which may be
users, group of users and so on. Principals are grouped
mto hierarchies using the act-for relationships. Join
operation 1s used to avoid Trojan horses. Declassification
is allowed. Write access is controlled™. The approach in*?
also applies the label approach. Every file, device, pipe
and process in a UNIX system 1s attached with a label to
control the access. Jom operation 1s used to avoid Trojan
horses. Declassification is allowed.

RBAC was also used in information flow contro
" hecause it is a super set of DAC and MACY ™ In
RBAC, a role is a collection of permissions™. A role can
establish one or more sessions. During a session, a user
playing a role possesses the permissions of the role.
Users can change role to enforce the need-to-know
principle®™. Since the original design of RBAC was not
for information flow control, the general cases of RBAC is
not suitable for controlling information flow in object-
oriented systems. The model in"” applies RBAC for
access control within object-based systems. It classifies
object methods and derives a flow graph from method
invocations. From the graph, non-secure information
flows can be 1dentified.

105 26-

DESIGN PHILOSOPHY OF IFCMC

In an executing object-oriented system, objects are
mstantiated from classes and messages are passed among
objects (a messages cormresponds to a method invocation
and messages are actually passed among object
methods). According to mformation hiding, message
passing 1s the only way for an object to access the
internals of another object. Tf an object-oriented system is
decomposed into subsystems, a subsystem can be
arranged to consist of classes and public mterface, in
which the mterface 1s composed of class methods for
accessing the subsystem’s internals. In other words, a
subsystem can encapsulate classes and offer interface
for subsystem communication. A subsystem
encapsulate not only classes but also mformation flow
control model, in which different subsystems may
embed different models. Since subsystems offer interfaces
for commumication, nformation can exchange among

carl

subsystems. Suppose information exchanges between

147

subsystem
subsystem
public interface
public interface Message mcssageClass and
information
mee;;:‘gelcms i : and flow control
flow control model
model message message
subsystemn
public interface
messageClass and
information
flow control
model

Fig. 1: Subsystems and their commumnications

two subsystems and the information flow control models
embedded in the subsystems Then,
preventing leakage of the mformation exchanged between
the subsystems becomes an 1ssue to solve. IFCMC solves
this issue. In other words, IFCMC coordinates
heterogeneous information flow control models.

As mentioned above, message passing 1s the only
way for an object to access the internal of another object.
Nevertheless, object-oriented languages such as TAVA
and C++ allow an object’s aftributes to be accessed
outside the object such as using the statements
obj.att = expression; and variable = obj.att, outside the
object obj. The statements violate information hiding. Tn
TFCMC, if a subsystem accesses an attribute of an object
1n another subsystem, we explicitly define methods in the
latter subsystem’s mterface for accessing the attribute.
The method names are the attribute name attached with an
R (for read) and a W (for write), respectively. For example,
if the attribute obyj.att within a subsystem 1s accessed by
another subsystem, the mnterface of the former subsystem
will contain the method obj.attW and obj.attR. The former
method is for writing obj.att using a statement like
obj.att = expression; and the latter for reading obj.att
using a statement like variable = obj.att;. According to
this arrangement, the statements obj.att = expression; and
variable = obj.att can respectively be transferred into a
statement that mvokes the method obj.attW and obj.attR.
Therefore, we will not discuss statements like
obj.att = expression; and variable = obj.att in the rest of
the paper.

Requiring strict information hiding as described
above 13 necessary because IFCMC uses subsystem
interfaces to coordinate heterogeneous information flow
control models. The coordination is based on the rule:
when information 1s passed from a subsystem to another
one, the security level of the information being passed

are different.

Asian J. Inform. Tech., 5 (2) : 145-154, 2006

should be the same as or lower than the security level of
the variable that receives the information. Tf low security
level variables receive high security level mformation, the
information may be leaked to the users that can access the
variables. The coordmation rule mentioned above can be
expended as follows:

a. 1f a parameter in a subsystem’s nterface receives an
argument from another subsystem, the security level
of the parameter should be the same as or higher
than that of the argument.

b. Ifavariable in a subsystem receives the return value

of a methed in another subsystem, the security level
of the variable should be the same as or higher than
that of the return value.

The first rule ensures that mformation passed to a
subsystem via arguments will not be leaked within the
subsystem. The second rule emsures that mformation
passed to a subsystem via method return values will not
be leaked within the subsystem. The rules use subsystem
mterfaces to coordinate heterogeneous mmformation flow
control models. Tn using TFCMC, we require the following
conditions to be simultaneously true:

The control granularity of the models coordinated by
IFCMC should detail to variables. This condition 1s
necessary because information managed by a
program 1s generally stored in variables. Since
different wvariables may be in different security
should be

other words, the
granularity should detail to variables.

Models coordinated by IFCMC should follow

subsystem interfaces to exchange information. This

levels™, variables protected

independently. Tn control

to using protocols to
software systems.

Therefore, the condition is reasonable.

corresponds
cooperating

condition
commuricate

The same programming language should be used to
program the subsystems. This is reasonable because
using different languages in a software system may
result in unexpected errors.

The second and third conditions do not limit
information flow control models coordinated by TFCMC.
Instead, the second condition requires IFCMC users to
follow subsystem interfaces to exchange information and
the third condition can be fulfilled when consensus 1s
reached. Tn this regard, as long as the control granularities
of several information flow control models are detailed to

148

variables, they can be coordinated by TFCMC. Since most
existing models detail the control granularity to variables,
IFCMC can be applied widely. IFCMC uses ACL to define
security levels of the information exchanged m the
interfaces, as described below:

Every parameter in a subsystem’s interface is
associated with an ACL to depict the parameter’s
security level.

Every argument in a message is associated with an
ACL to depict the argument’s security level when the
message is passed to another subsystem.

Every return value of a method in a subsystem’s
unterface 1s associated with an ACL to depict the
return value’s security level.

Every variable that receives the return value of
another subsystem’s method 1s associated with an
ACL to depict the variable’s security level.

With the ACLs
arguments, method retun values and variables that
receive method return values,
different information flow control models
implemented through ACT. comparison. If two ACLs are
incomparable, the passing of argument to parameter or the

associated with parameters,

coordination among
can be

receiving of method return value by a variable 1s not
allowed. That 15, the corresponding statement 1s non-
secure. As a summary, the design philosophy of IFCMC
15 listed below:

a. Explicitly describe the interface of every subsystem
and attach an ACT to every parameter and method
return value to ensure the security of information
flows across subsystems.

b. If a statement in a subsystem involkes a method in

another subsystem, attach an ACL to every
argument and the variable to receive the method
return value. The ACLs ensure information flow

security across subsystems.
IFCMC

This section describes IFCMC and its coordination
operation. IFCMC 1s composed of two parts. One 1s in the
message senders (ie., the subsystems that invoke
methods i other subsystems) and the other m the
message receivers (i.e., the subsystems that offer methods
for other subsystems to invoke).

Definitions: We give definitions related to TFCMC below.
Definitions 2 and 3 define the IFCMC part of message

Asian J. Inform. Tech., 5 (2) : 145-154, 2006

receivers and the description after Definition 3 constitutes
the TFCMC part of message senders.

Definition 1: A subsystem subsys is defined below:
subsys = (INTF, ENC), m which

INTF is the interface of the subsystem for other
subsystems to invoke. Tt is composed of methods offered

by the subsystem (Defimtion 2 defines interface
methods).
ENC is composed of those encapsulated i the

subsystem (see the description after Definition 3).

Definition 2: A method #fimd in a subsystem’s interface 1s
defined below:

ifmd = (name, par and ACL, ret4CL), m which

name is the method’s name.

par and ACL is a sequence, in which each element is
composed of a parameter and the ACL associated with the
parameter (defimtion 3 defines ACL).

retdCL is the ACL of the method return value if the
method retums a value.

Definition 3: An ACL 13 composed of a read access
control list (RACL) to control read access and a write
access control list (WACL) to control write access. An
ACL ACL,, attached to a variable var is defined below:

ACL,, = (RACL,,, WACL,,), in which
RACL,,, = {md | md is a method that is allowed to
read the variable var}.
WACL,, = {md | md 13 a method that 15 allowed to
write the variable vart .

Those encapsulated 1 a subsystem include classes
and an nformation flow control model. IFCMC cares
neither classes nor the information flow control model.
TFCMC cares only the statements that invoke methods in
other subsystems because the statements may result in
mformation leakage among subsystems. IFCMC attaches
an ACL to every argument of a method invocation
statement across subsystems. Tt also attaches an ACL to
the variable that receives the method return value if the
method returns a value. The ACLs prevent information
leakage among subsystems, as described in section 4.2.

149

IFCMC coordination (ensuring the security of method
invocations across subsystems): If a software system 1s
decomposed into subsystems, information flows within
a subsystem are controlled by the mformation flow
control model embedded in the subsystem. If a message
1s passed across subsystems, IFCMC checks the
information flows induced by the message to ensure that
the message passing will not result in mformation leakage.
Checking an information flow corresponds to comparing
ACLs related to the flow. To explain ACL comparison,
we suppose that the argument arg 1s passed to the
parameter par of the method objmd. We also suppose
that the ACLs associated with arg and par are
respectively (RACL,,, WACL,,) and (RACL,,, WACL,,).
Then, the following secure flow conditions should be
simultaneously true for the information flow induced by
passing arg to par to be secure.

First secure flow condition:
c : C
(RACL,, = RACL,_) A ({obj.md} = RACL,)

Second secure flow condition:
(WACL,, = WACL,,) N (WACL,, = {obj.md})

The first secure flow condition controls read access.

The condition RACLPEYg RACL,, requires that the
security level of par should be the same as or higher than
that of arg because the methods that can read par can also

read arg. The condition {obj.md} < RACL,, is necessary
because the argument will be read by the method obj.md.
The second secure flow condition controls write access.
It requires the methods that can write the argument arg
can also write the parameter par. This means that the
methods trusted by arg should also be trusted by par. The
condition also requires the method obj.md to be within
WACL,, because the write operation (i.e., write arg to par)
is performed in obj.md.

With the secure flow conditions, IFCMC ensures
inter-subsystem information flow security using the
following two IFCMC coordination rules (the rules are a
formal representation of the coordination rules mentioned
in section 3). In defining the rules, we suppose: (a) a
statement n the subsystem subsysl invokes the method
obj.md in the subsystem subsys2, (b) the statement in
subsys] passes the arguments (argl, arg2,..., argn) to the
method obj.md, (¢) obj.md receives the arguments using
the parameters (parl, par2,..., parn), (d) the method obj.md
retums a value retval and (e) retval is received by the
variable var in subsys].

Asian J. Inform. Tech., 5 (2) : 145-154, 2006

First IFCMC coordination rule: For every argument argi
and the parameter pari receiving the value of argi, their
ACLs (RACL,,, WACL J,and (RACL , WACL)
should meake the following secure argument passing
conditions simultaneously true. Note that the conditions
are directly derived from the two secure flow conditions.
First secure argument passing condition:

(RACL,,, & RACL,,) N (fobjmd} & RACL,,)

Second secure argument passing condition:
(WACL,; = WACL,;) N (WACL,; {obj.md})

Second IFCMC coordination rule: For the return value
retval and the variable var that receives the return value,
their ACLs (RACL,,. WACL,,) and (RACL,,,.,, WACL._..)
should make the following secure value returming
conditions simultaneously true. Note that the conditions
are directly derived from the two secure flow conditions.

First secure value returning condition:
(RACL,, & RACL,,) A (fobjmd} & RACL,..)

Second secure value returning condition:
(WACL,, = WACL,..) N (WACL,. = {obj.md})

Proof of correctness Without loss of generality, we use
a two-subsystem case for the proof. We call the
subsystems subsys] and subsys2 and make the following
assurm ptions:

a. The subsystem subsys2 offers the interface method
obf.md for subsys] to invoke.

b. When subsysl invoke the interface method objmd,
1t passes the arguments argl, argZ,.... argn and the
ACLs of the arguments are respectively ACL
ACL ... and ACL,, .

¢. The subsystem subsys] uses variable var to receive
return value and the ACL of var 158 ACL,,..

d. The interface method oby.md uses the parameters
parl, par2,.., parn to receive the arguments passed
to the method and the ACLs of the parameters are
respectively ACL,,;, ACLys ... and ACL,,, .

e. The interface method obj.md retumns the value retn
and the ACL of retn is ACL.,,....

argd»

When the subsystems subsys! mvokes objmd, both
TFCMC coordination tules mentioned in the previous
section should be true. According to the first TFCMC
coordination rule, both secure argument passing
conditions are true. That 1s, for every argument arg with
an ACL (RACL,, WACL_) and the parameter par

args

150

receiving the value of arg, which is associated with an
ACL (RACL,, WACL,). the following conditions will be
simultaneously true:

(RACL,, & RACL,) N (fobj.md} S RACL,,)
(WACL,,, = WACL,) N (WACL,, = {obj.md})

According to the first condition above, the security
level of a parameter 1s the same as or higher than that of
an argument. As long as the read access control of the
information flow control model embedded in subsys2 is
correct, information passed to susbsys2 via parameters
will not be leaked by the parameters of subsys2. The
rationale is that a variable intending to obtain the
information carried by a parameter should possess a
security level that is the same as or higher than that of the
parameter. According to the second condition above, the
writers (which are methods) trusted by an argument are
also trusted by the parameter receiving the argument. As
long as the write access control of the mformation flow
control model embedded m subsys2 18 correct,
information passed to susbsys2 via arguments will not
corrupt the information carried by the variables in
subsys2.

According to the second IFCMC coordination rule,
both secure value returning conditions are true. That is,
for the return value of the method ebfund with an ACT.
(RACL . WACL,, ,p) and the variable var receiving the
value of the return value, winch is associated with an ACL
(RACL,,, WACL,,), the following conditions will be
simultaneously true:

(RACL,, S RACL) N ({objimd} S RACL,,,,)
(WACLyy = WACL 0 ™ (WACL,, = fobj.md}

According to the first condition above, the security
level of the variable receiving the retumn value of the
method obj.md 1s the same as or lugher than that of the
retum value. As long as the read access control of the
information flow control model embedded in subsysi is
correct, mformation passed to susbsysl via method return
values will not be leaked by the variables receiving the
return values. The rationale is that a variable intending to
obtain the information carried by a variable that receives
a method return value should possess a security level that
15 the same as or higher than that of the vanable.
According to the second condition above, the writers
(which are methods) trusted by the variable receiving the
return value of the method obj.md are also trusted by
return value of the method obj.nd. As long as the write
access control of the information flow control model

Asian J. Inform. Tech., 5 (2) : 145-154, 2006

gubatem 1 sobetem 2
1+ phli ntrface iphlic intesfice
(every parameter and method retum value is .
associsted with sn ACL, inchding RACT. and WACL) . e
trams formed from the embsdded information flow /nterfice of "md2" including ACLa
1 mechaniarm) *f of parameters and that of method retum
value are defined here. */
Hprogram code :
A code
» the information flow control mechan _imsml
for o oo vaiablorweivingretum| |
valu into ACLs, inchading RACLs amd WACLa, * Ly mata(.) {
$—""1" m FEMC coordinatir checks wheiler
/* Pass argmmenis and their ACLs to the mathod *md2" he first IFCMC coordination role is
of ubsystem 2 1o imvake the mefhod */ abeyed */
1 IFCMC coardinator chocks whether the socond VeSS0 1 I the first IFCMC coardination nile|
TFCIMC coordinstion fulea is obeyed, * \ is abeyed, exoute the method. */
[~ return var,
Receive method rotorm viluo from "md2” of ¥
subaysten 2 if the scvond IFCMC coordination el s
abeyed */
Fig. 2. Transformation of ACLs from information flow

control mechanisms

md1.varl md2.var2 Legend:
md]1.varl: the variable "varl" of
the methoed "md1*. Note
that "md1" through
"md7" are not necessary
md3.var3 mdd.vard different. For example,

"md]" and "md2" may
be the same.

—- camn flow
md5.varS md6varé md7var?

Fig. 3: A lattice

embedded in subsysl is comrect, information passed to
susbsysl via method return values will not corrupt the
mformation carried by the variables in subsys1.

USING IFCMC

To coordinate subsystems embedded with
heterogeneous information flow control models using
FCMC, programmers should attach ACLs to arguments,
parameters, method return values and variables that
receives method return values. If a subsystem 1s
embedded with an information flow control model that is
nothing to do with ACLs, transformation is necessary.
We use Fig. 2 to explamn this concept.

Figure 2 depicts the commumcation of two
subsystems. In the public interface of a subsystem,
methods for other subsystems to invoke are declared. In
the declaration, every parameter and every method return
value 1s associated with an ACL for information flow

151

control. An ACL is composed of an RACT. and WACT,,
which are transformed from the information flow control
mechamsm embedded in the subsystem. For example,
suppose the lattice model 15 used m subsystem 1. Then,
the RACL and WACL of md4.var4 transformed from the
lattice in Figure 3 are {mdl, md2, md4} and {md6, md?7,
md4}, respectively. The transformation follows the no
read up and no write down rules!™.

As shown in Fig. 2, before a method in subsystem
1 invokes the method md2 in subsystem 2, every
argument passed to md2 and the variable to receive the
return value of md2 should be associated with an ACL.
When md2 i1s mvoked, the IFCMC coordmator checks
whether the first IFCMC coordination rule is obeyed. If
the rule 1s obeyed, the method 1s executed. Otherwise, the
invocation 15 blocked. Suppose the rule 1s obeyed and the
method returns a value to subsystem 1, the TFCMC
checks whether the second IFCMC
coordmation rule 1s obeyed. If the rule 15 obeyed, the
variable in subsystem 1 receives the return value.
Otherwise, the return operation is blocked.

coordinator

RESULTS AND DISCUSSIONS

We developed two RBAC-based information flow
control models namely OORBACH?! and L'RBACH
whose permissions are based on ACLs. We also
developed an association-based mformation flow control
model* whose access rights are also based on ACLs.
Moreover, we developed a label-based information flow
control model™ " whose access rights are nothing to do
with ACLs. We use IFCMC to coordinate the four models.
Conceptually, Figure 4 depicts a software system
embedding the four medels coordinated by TFCMC (we
suppose that the system 18 decomposed into four
subsystems). In the figure, the bottom level of a
subsystem is the subsystem implementation, the middle
level is the information flow control model embedded in
the subsystem and the top level 1s the IFCMC model.
Before executing the software system, every subsystem
should be processed by the preprocessor of the
information flow control model embedded in the
subsystem. For example (see Figure 4), subsystem 1
should be processed by the preprocessor of OORBAC[26]
before execution. The preprocessing produces a security
monitor of the model and the JAVA program for the
subsystem.

After every subsystem 1s preprocessed, the software
system should be preprocessed the second time by the
TFCMC preprocessor. The product produced by the
IFCMC preprocessor 1s a software system represented in
a programming language. Currently, OORBAC, L'RBAC,

INUImber oI non secure
information flows among

Asian J. Inform. Tech., 5 (2) : 145-154, 2006

subsystem 1 subsystem 2
aT— PO sorendicatin]
policty (ACLs for policty (ACLs for
interface methods) imerface methods)
OORBAC _ subsystem LRBAC
security policy security policy
Implementation Implementation
of subsystem 1 of subsystem 2
subsystem 3 subsystem 4
IFCMC coondinati TFCMC coordination
policy (ACLS for nolicy (ACLs for
interface methods nterface methods
Association-based

. N Label-based model}
mode] security policy] secuity policy
Implementation Impl i

iplementation

of subsystem 3 of subsystem 4

Fig. 4: IFCMC coordination in which an arrow is a set of
message associated with ACLs

The group using —g—— The group using
OORBAC LnRBAC
The group using
association-based
model

—_——

The group using
labe-based model

—_—

Experiment result

Lh
|

subsysterns
I A

—
1

<

Test data set

Fig. 5: Experiment result

the association-based information flow control model and
the label-based mformation flow control model are
embedded in JAVA. Therefore, the output of the IFCMC
preprocessor is a pure JAVA program, which is composed
of an IFCMC coordinator, the security momtors for
various information flow control models and the original
TAVA programs. The ITFCMC coordinator ensures that
the two IFCMC coordmation rules are obeyed during
program execution. The security momtor embedded in
a subsystem such as the OORBAC security
monitor™ ensures informaticn flows security within the
subsystem. With the cooperation of the IFCMC
coordinator and the security monitors of the information
tflow control models embedded i subsystems, information
flow security within a subsystem and that among
subsystems will be ensured.

We evaluated TFCMC using the system model in
Figure 4. Many examples were used n our evaluation.
Here we offer an experiment result using the example of a
simple student management system. The system was
decomposed into for subsystems, m which the first
subsystem primarily manages the basic information such
as student names and TDs, the second primarily manages
the exammations taken by students and the scores
obtained by the students, the third primarily manages the
inter-relation between students and the library (eg.,
manages the borrowing and returmng of books) and the
last primarily manages students’ good records (e.g., a
student denates money to the school) and bad records
(e.g., a student does not return a book he borrowed from
the library on time). We trained twelve students to use the
models shown in Figure 4, in which three of them formed
a group to use an mformation flow control model. We
used ten sets of test data to run the system and collected
the averaged non-secure information flows per 10
statements across subsystems. The experiment result 1s
shown in Figure 5. From the figure, we identify that
students in the group using the label-based model
committed more errors than those m other groups. This
might be a consequence that the group of students is
unfamiliar with ACLs because the label-based model is
nothing to do with ACLs.

To further show that IFCMC coordinates
heterogeneous information flow control models (i.e.,
[FCMC can identify non-secure mformation flows across
subsystems embedded with different information flow
control models), we required the students to inject no-
secure information flows across subsystems into their
subsystems. We then re-executed the system and found
that every non-secure information flow injected by the
students was identified by IFCMC. We thus believed that
TFCMC is wseful in coordinating heterogeneous
information flow control models. Below we give some
experiences n using [FCMC:

a. Since programmers are required to add TFCMC
information to the subsystems they develop (IFCMC
information includes ACLs of arguments, those of
parameters, those of method return values and those
of the variables receiving the retum values), the load
of programmers is increased. If a programmer is
familiar with ACLs, adding TFCMC information to the
subsystem developed by the programmer will not
bother him much. For example, programmers using
OOBBAC and L*RBAC performed well in adding
TFCMC information. However, adding IFCMC
information to a subsystem developed by a
programmer unfamiliar with ACLs did cause trouble.
For example, programmers using the label-based
model had difficulty in preparing TFCMC information.

Asian J. Inform. Tech., 5 (2) : 145-154, 2006

This experience was a frustration for us. We thus
interviewed the students that used the label-based
model and found that they had poor idea about ACT.
(because they were undergraduate students). We
thus trained them to use ACLs and required them to
re-program their subsystem. We then re-evaluated
the system and found that non-secure information
flows among subsystems caused by the label-based
model group were decreased to almost the same level
as other groups.

b. As mentioned in sections 4 and 4.1, TFCMC
information is composed of two parts, in which one
is in the subsystems that invole methods in another
subsystems and the other in the subsystems that
offer methods for other subsystems to invoke.
TFCMC information in a subsystem that offers
methods for other subsystems to invoke is grouped
in the subsystem’s interface. Therefore, this part of
TFCMC information is relatively easy to manage. On
the other hand, TFCMC information in a subsystem
that invokes methods in another subsystems scatters
all over the subsystem (i.e., statements invoking
other subsystems’ interfaces are scattered).
Therefore, this part of TFCMC information is
relatively difficult to manage. Tn fact, most non-
secure inter-subsystem information flows are caused
by this part of TFCMC model.

CONCLUSIONS

This study proposes a model TFCMC (information
flow control model coordinator) to coordinate
heterogeneous information flow control models using
access control list (ACL). Tt uses read access control lists
(RACLs) to control read access and write access control
lists (WACLs) to control write access. IFCMC offers
coordination rules using RACLs and WACLs to ensure
secure information exchange among subsystems
embedded with different information flow control models.

We evaluated TFCMC through experiments. During
the experiment, we intentionally injected non-secure
information flows across subsystems into the systems
being tested The experiment showed that TFCMC
identified every injected non-secure information flow. We
thus believe that TFCMC is useful in identifying non-
secure information flows across subsystems embedding
with different information flow control moedels. That is,
TFCMC can coordinate heterogeneous information flow
control models.

REFERENCES
1. Sabelfeld, A. and A.C. Myers, 2003. Language-

Based Information-Flow Security. IEEE T. Selected
Areas in Commun., 21: 5-19.

153

2.

10.

11.

12.

13.

14.

15.

16.

Myers, A. and B. Liskov, 2000. Protecting Privacy
using the Decentralized Label Model. ACM Trans.
Software Eng. Methodology, 9: 410-442.

Myers, A.C., 1999. Tflow: Practical mostly-static
information flow control, Proc. 26’th ACM
Symp. Principles of Programming Language,
pp: 228-241.

Myers, AC. and B. Liskov, 1997. A
Decentralized model for infermation flow control,
proc. 17th ACM Symp. Operating Systems
Principles, pp: 129-142.

Myers, A. and B. Liskov, 1998. Complete, Safe
information flow with decentralized labels,
Proc. 14th TEEE Symp. Security and Privacy,
pp: 186-197.

McCollum, C.T., J.R. Messing and .. Notargiacomo,
1990. Beyond the pale of MAC and DAC -
Defiming New Forms of Access Control, Proc. 6’th
TEEE Symp. Security and Privacy, pp. 190-200.
Bell D.E. and ... LaPadula, 1976. Secure computer
systems: Unified exposition and multics
interpretation, technique report, Mitre Corp.,
Mar. http: /fesre.nist. gov/publications
Mstory/bell76.pdf

Denning, D.E., 1976. A Lattice Model of Secure
Information Flow, Comm. ACM, 19: 236-243.
Demming D.E. and P.J. Denmng, 1977. Certification
of Program for Secure Information Flow, Comm.
ACM, 20: 504-513.

Brewer DF.C. and M.J. Nash, 1989. The Chinese
Wall Access control policy, Proc. 5'th TEEE Symp.
Security and Privacy, pp: 206-214.

Samarati, P., E. Bertino, A. Ciampichetti and 3.
Tajodia, 1997. Information Flow Control in Object-
Oriented Systems, TEEE Trans. Knowledge Data
Eng., 9 524-538.

Bertino, E. Sabrina de Capitani di Vimercati, E.
Ferrari and P. Samarati, 1998. Exception-based
Information Flow Control i Object-Oriented
Systems, ACM Trans. Information System
Security, 1: 26-65.

Ferrary, E., P. Samarati, E. Bertine and S. Jajodia,
1997, Providing Flexibility in Information flow
control for Object-Oriented Systems, Proc. 13°th
IEEE Symp. Security and Privacy, pp. 130-140.
Mecllroy MD. and J.A. Reeds, 1992. Multilevel
Security in the UNTX Tradition, Software-Practice
and Experience, 22: 673-694.

Izaki, K., K. Tanaka and M. Takizawa, 2001.
Information Flow Control in Role-Based Model for
Distributed Objects, Proc. 8'th International Conf.
Parallel and Distributed Systems, pp: 363-370.
Yasuda, M., T. Tachikawa and M. Takizawa, 1997.
Information flow in a purpose-oriented access
control model. Proc. International Conf. Parallel
and Distributed Systems, pp: 244-249.

17.

18.

19.

20.

21.

22,

23.

24

25.

26.

27.

28.

29.

30.

31.

Asian J. Inform. Tech., 5 (2) : 145-154, 2006

Yasuda, M., T. Tachikawa and M. Takizawa, 1998.
A purpose-oriented access control model, Proc.
12°th International Conf. Information
Networking, pp: 168-173.

Tachikawa, T., M. Yasuda and M. Takizawa,
1997. A purposed-oriented access control model
in object-based systems. Trans. Information
Processing Society of Tapan., 38: 2362-2369.
Graubart, R., 1989. Onthe Need for a Third Form of
Access Control, Proc. 12th Nat’'l Computer
Security Conf., pp: 296-303.

Jajodia S. and B. Kogan, Integrating an object-
oriented data model with multilevel security. Proc.
6’th IEEE Symp. Security and Privacy, pp: 76-85.
Foley, SN., 1989. A model for secure information
flow, Proc. 5th TEEE Symp. Security and Privacy,
pp: 248-258%.

Zdancewic, S., L. Zheng, N. Nystrom and A.C.
Myers, 2001 . Untrusted Hosts and Confidentiality:
Secure Program Partitioning, Proc. 18th ACM
Symp. Operating Systems Principles.
Varadharajan V. and S. Black, 1990. A multilevel
security model for a distributed object-oriented
system. Proc. 6’'th IEEE Symp. Security and
Privacy, pp: 68-78.

Tari 7. and S.W. Chan, 1997. A role-based access
control for intranet security. I1EEE Internet
Computing, 1: 24-34.

Maamir A. and A. Fellah, 2003. Adding flexibility in
wnformation flow control for object-oriented
systems using versions. Intl. J. Software Engin.
Knowledge Engin., 13: 313-326.

Chou, S.C., 2004. Embeddmng role-based access
control model in object-oriented systems to protect
privacy. I. Sys. Software, 71: 143-161.

Chou, 8.C., 2004. Providing flexible access control
to an information flow control model. J. Sys.
Software, 73: 425-439.

Chou, S.C., 2004. L'RBAC: A multiple-leveled
role-based access control model for protecting
privacy in object-oriented systems. J. Object
Technol., 3: 91-120.

Chou, 5.C., 2003. Information flow control among
objects: Taking foreign objects intro control.
HICSS-36, Hawaii, pp: 335-344.

Chou, S.C., 2002. Information flow control in
object-based systems. Intl. Computer Symposium,
Hualien, Taiwan.

Harrison, M.H., W.1L.. Ruzzo and I.D. Ullman, 1976.
Protection in operating systems. Communications
of the ACM, 19: 461-471.

154

32.

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Olivier, M.S., R.P. van de Riet and E. Gudes, 1998.
Specifying application-level security in workflow
systems. In proceeding of the 9°th International
Workshop on Database and Expert Systems
Applications, pp: 346-351.

Thomas R.K. and R.S. Sandhu, 1997. Task-Based
Authorization Controls (TBAC): A Family of
models for active and enterprise-oriented
authorization management. In proceedings of the
TFIP WG11.3 Workshop on Database Security.
Sandhu, R.S., 1993. Lattice-Based access control
models. IEEE Computer, 26: 9-19.

Sandhu, R., 1996. Role hierarchies and constraints
for lattice-based access controls. Proc. Fourth
European Symposium on Research in Computer
Security, pp: 65-79.

Nyanchama M. and S. Osborn, 1995, Modeling
mandatory access control in role-based security
systems. Database security IX: Status and
Prospects, pp: 129-144.

Osborn, 3., 1997. Mandatory access control and
role-based access control revisited. Proc. Second
ACM Workshop on Role-Based Access
Control, pp: 31-40.

Osbom, S., R. Sandhu and Q. Munawer, 2000.
Configuring role-based access control to enforce
mandatory and discretionary access control
policies. ACM Trans. Info. Sys. Security, 3: 85-106.
Sandhu, R.5., E.J. Coyne, HI. Feinstein and
C.E. Youman, 1996. Role-based access control
models. TEEE Computer, 29: 38-47.

Nyanchama M. and S. Osborn, 1994, Access rights
m role-based security systems. Database
Security VIII: Status and Prospects, pp: 37-56.
Sandhu, R., V. Bhamidipati and Q. Munawer, 1999.
The ARBACO97 model for role-based administration
of roles. ACM Tran. Info. Sys. Security, 2: 105-135.
Thomsen, D.J., 1991. Role-based application design
and enforcement. Database Security 1V Status and
Prospects, pp: 151-168.

Chou S.C. and Y.K. Wen, 2004. Association-based
mformation flow control m object-oriented
systems. Intl. J. Software Engin. Knowledge
Engin., 14: 291-322. 2004,

