Asian Journal of Information Technology 6 (1): 38-46, 2007
© Medwell Journals, 2007

Statistical Correlation Counts of Program Command Sequence for
Establishing Copyright Violations

O.B. Longe and S.C. Chiemeke
Department of Computer Sciences, University of Benin, PM.B. 1154, Benin City, Nigeria

Abstract: Any consideration that requires proofing that an author’s copyright has been violated, 1s firstly an
endeavor to tackle the general problem of showing that there are grounds for suspicion that a program has been
copied in whole or in part, or that it is being used illicitly. The further task is to provide evidence of similarity
in order to aid the identification of a program, or program modules concealed in another program as an aid to
litigation. Effective protection against piracy combines both legal and techmical methods. Legal protection
encompasses legislation to protect mtellectual property by copyright or contract law ete. Technical methods
take advantage of software identification techniques such as watermarking, fingerprinting and birthmarks.
Premised on a software developed by the authors (Christened CoVFioChecker) to count program lkeywords, this
paper mntroduces the concept of statistical correlation counts as a measure for comparing program codes in
order to establish copyright infringement. Results obtammed using the program similarity measure show that the
measure is 1 if all command in one program are the same with that of another and -1 if all commands in one
program are absent in the other. As a standard, similarity measures ranging between 0.7 and 1 could serve as
a basis for further probing regarding copyright infringements.

Key words: Copyright, correlations, frequencies, graphs, identification, piracy, protection, statistics, validation

and violations

INTRODUCTION

Software development from its conceptualization
stage to the actual implementation is tasking intellectually,
financially and otherwise. Programming management must
therefore safeguard the creative efforts and nvestment
represented by proprietary computer software and
database development. Knowledge of legal and other
measures available 1s required to design a comprehensive
program for protecting these resources. The determination
of the most appropriate protective measure should be
based on a risk analysis of each situation. Risks
assoclated with the protection of proprietary software and
databases vary, depending on the nature of software or
database involved, the access allowed and the
distribution These include
unauthorised access, malicious attacks and virus attacks,
damages associated with usage and system failures,
software theft in the form of piracy and counterfeiting.
Protective schemes must therefore be assessed in the
light of trade-offs associated with implementing,
maintaining and enforcing the forms of specific protection
available (Jaiyesinmi, 2002).

Among the various threats against which software
must be protected, piracy ranks highest in terms of its

scheme used. risks

impact on developments in information technology and
the economic and social mmplications on the society at
large. The term software piracy covers such activities as
the unauthorised copying of programs, counterfeiting and
distributing software illegally. It 1s important to
understand the different software piracy chammels, not
just to comply with the law but also to protect against
bigger economic problems like lost revenue and lost jobs.
The survival of the software industry i1s paramount to
the survival of modemn business and IT activities
(Christian, 1992).

Program characteristics: A program has varying degrees
of structure which be inspected and measured as a
characteristic of the data sequence. The measurement may
not be unique to the data, but data representing a
structured program 18 likely to show defuute
characteristics, which permit a measure of similarity
between two different sets of codes. Since the aim is to
seek such characteristics in order to decide whether a
program or a program module has been copied and
perhaps embedded in a larger program, then it s
imperative to check the extent to which these unique
characteristic provides evidence to justify suspicion. One
of the most unique features of a program 1s the relative

Corresponding Author: S.C. Chiemeke, Department of Computer Sciences, University of Benin, P.M.B. 1154, Benin City, Nigeria

Asian J. Inform. Tech., 6 (1): 38-46, 2007

frequency of commands and reserved words. Others are
the repetition of program sequences and their position in
the code, program variables and the use of structured
styles. The value of a program lies in the operations,
which can be out rather than in the appearance, design
and arrangement of the code. For instance, visible
features such as and names of variables in a lugh level
language can be readily altered or rearranged by a smart
pirate without affecting the basic output or operation of
the program. When this is done, variables can either be
eliminated or translated mto different forms when the
program 1s compiled. The need therefore arise to check
not only whether an entire program has been copied but
also whether a module of a program has been copied into
another program. Such a module, when compiled, will be
allocated storage addresses which will be a function of
the position of the module in the program so that the
machine code will look very different on a straight
correlation measure.

The intrinsic qualities of program commands for
validating infringements: Tn checking on the similarity
between programs, there are various criteria that are
mdependent of the modifications that a pirate may
mtroduce in order to disguise the code. For this reason we
seek features of a program which are characteristic of the
program. The characteristic needs to relate to features of
the program that are difficult to alter and which 1f possible
are represented in the machine code (Derrick, 1990). The
program commands (or reserved words) and their
distributions throughout the program fall mto this
category. Firstly, 1t 1s difficult for an mfringer to tamper
with them without modifying the function of the program.
Secondly, if they are altered, it takes substantial
understanding of the entire program code and the
consequences of such code alterations for the infringer to
be able to do any meaningful thing with the program. Of
course it is as good as re-writing the program from the
start. This 1s the mvestment of time and energy that the
miringer 1s runmng from, so he is likely not going to go to
the extent of removing commands, mere window dressing
of variable names and code re-arrangement may suffice for
his trade.

Identifying similarities in program command sequence:
Based on the premises in the last section, it can be
established that the sequence of commands m a program
15 ndependent of the simple fagade that might be
attempted by an infringer by altering other program
features such as variable names, remarks, line numbers,
fonts etc. A routine can be written in any language.
CoVioChecker (an acronym of Copyright Vielation

39

Checker) has been designed using visual basic to
accommodate different programming language for the
purpose of extracting or harvesting program command
sequence (Longe, 2004).

Features of colioChecker: The program provides the
following capabilities:

The facility to set up the programming language in
which the programs to be compared are written using
the Setup Lang Command. Provision has been made
for six programming languages viz: VB6, JAVA, C++,
C#, DBaselV and PASCAL.

Tt also provides the avenue through which new
keywords can be added to the existing keywords n
the language database using the ADD New Keyword
command. This is to ensure that the program remains
relevant and operational as new developments and
upgrades comes into the various languages for which
provision has been made. Simply put, it mamtains the
history of the wvarious programs and ensures
compatibility and continuity.
Facility for loading files
(text-based) after the proper applicable languages
have been selected.

under examination

The add keyword and language dialog box: As explained
before, it 13 used to add new keywords m a selected
language shown in Fig. 1.

The language selection dialog box: Used to select the
language for the programs to be tested. Both original and
testing programs must be written in the same language
shown in Fig. 2.

If the programs subjected to testing are not written in
the language selected and therefore have no keyword(s)
in the selected language, the dialog box below will appear.
Note also that provision is made only for testing source
codes and not already compiled codes (object codes).
Testing object codes will yield results such as the one
shown in the testing section of the dialog box below.

Extracting program commands using the colVieChecker:
The command counts for some modules of a stock control
program 1n an agric-produce sales outlet and two other
programmes developed (also as projects) to computerize
sales records at a supermarket and a filling station are
extracted using the ColioChecker. The program listings
are shown in the Appendix. Graphs plotted from the
command counts obtained from the comparison made by
the CoVioChecker are 1llustrated in Fig. 3(a-d), for each of
the 16 commands used in the Dbase (TV) programs under

Asian J. Inform. Tech., 6 (1): 38-46, 2007

Fig 1. Adding keywords dialogue box

Fig 2: Language selection dialogue box

20+

151
(2} Program 1 (b) Program 2
151
101
5-
D+ T T 1
12,©@ 0@
104 o ’ 15 Pro !
—4— Program 2
3 —a— Program 3
10
6-
44 5
24 04
0 ;W T T 1
5 4
3 19 15

Combined graph for 1-3

Fig. 3: (a-d) MS-excel plot for the various data derived from the count

40

Asian J. Inform. Tech., 6 (1): 38-46, 2007

Table 1: Commands retrieved using ColioChecker

Command Program 1 Program 2 Program 3
Append 1 1 1
Case 0 9 9
Do 8 15 15
Do while 2 0 0
Set 5 3 4
Use 1 1 1
Clear 5 3 1
Else 2 1 1
If 10 2 2
Read 6 2 3
Wait 0 0 0
Pack 3 0 0
Locate 1 0 0
Store 2 [6
Replace 7 0 0
Say 11 17 16

examination. It is observed that some commands occur
very frequently in all programs, some are infrequent and
some are absent. The various co-ordinates on the graph
depict the occurrence of a particular command in the order
shown in the Table 1. Displayed below are the results
obtained from the ColioChecker for the comparison
carried out.

APPENDIX

Program 1: Development of a database package for stock
control in an agric-produce sales outlet:
THIS PROGRAM IS TO CREATE A NEW STOCK
SET ECHO OFF

SET TALK OFF

SET STATUS OFF

CLOSE ALL

CLEAR

USE STOCK. DBF

DO WHILE. T.

CLEAR

IC=L

DO WHILE (I C<=23)

@1 C 10, SAY REPLICATE (CHR 177),80)
IC=C+1

END DO

STORE TOD. (“11”) TO M DATE,
EXP=0

STORE SPACE (15) TO DS

A=0)

QT=0

RD=0

PR=0

ITN =0

SET COLO TO W/B

@ 6,20 CLEAR TO 20,65

@5,191021,66 DOUBLE

4

@ 5,33 SAY “NEW ITEMISTOCK”

@ 7,21 SAY “STOCK NO:” GET IN

READ

IF1TN =0

CLEAR

RETURN

END IF

LOCATE FOR STOCK = ITN

IF FOUND ()

@17.21 SAY “NUMBER ALREADY EXISTS TRY AGAIN
“Y/N” GET A

READ

TFITN =0

TF A Y

LOCP

END IF

ELSE

@ 8,21 SAY “STOCK NAME:” GET DS @ 9,21 SAY
“DATE: “GET MDATE @ 10,21 SAY “DESCRIPTION:”
GET QT

@ 11,21 SAY “QUANTITY ONHAND:” GETDR @ 12,21
SAY “QUANTITY SUPPLIED:” GET EXP READ
END TF SET COLO TO W/B ANS= Y

@ 21,20 CLEAR TO 23,45

@ 22,23 SAY “SAVE RECORD{YIN}” GET ANS
PICTURE “! READ

IF ANS = {Y}

APPENDIX BLANK

REPLACE NAME WITH DS

REPLACE DESC WITH QT

REPLACE HAND WITH RD

REPLACE SUPPLIED WITH PR

REPLACE STOCK WITH ITN

REPLACE DATE WITH M DATE

REPLACE SOLD WITH EXP

END IF

@ 17,21 SAY MORE CREATION (Y/N) GET A

READ

1F A“Y”. OR. A = “Y”

LOCP

ELSE

CLOSE ALL

RETURN

END

END IF

END DO

Program 2: Computerised sales systems for jovenson
supermarket auchi:

***A PROGRAM TO RUN SUPERMARKET SALES
USING COMPUTER SYSTEMS ***

*** DESIGNED BY OSAMUYI KINGSLEY ***=

Asian J. Inform. Tech., 6 (1): 38-46, 2007

% ND IT COMPUTER SCIENCE, **

*X MAT NO. ST/04/345% %%

SET TALK OFF

SET STATUS OFF

SET SCORE OFF CLEAR

@5,30 SAY “M ATN PROGRAM”

@23,20 SAY “JOVENSON SUPERMARKET AUCHIL”
COLOR+ W

@7,22 SAY “1. ADD NEW INFORMATION”

@8,22 SAY “2. VIEW ALL INFORMATION *

@9,22 SAY “3. VIEW A SINGLE INFORMATION™
@10,22 SAY “4. DELETE A SINGLE INFORMATION”
@11,22 SAY “5. DELETE ALL INFORMATION”
@12,22 SAY “6. SALES CALCULATION”

@13,22 SAY “7. PRINT REPORTS”

@14,22 SAY “8. EXIT PROGRAM” STORE SPACE (1) TO
CHOICE

@18,20 SAY “Choose the Option Needed” GET CHOICE
READ

DO CASE
CASE CHOICE = “1"
DO ADDREC@ . PRG

CASE CHOICE = “2"
DO VIEW1.PRG

CASE CHOICE = “3"

DO VIEW2.PRG

CASE CHOICE = “4"

DO DEL1.PRG

CASE CHOICE = 5"

DO DEL2.PRG

CASE CHOICE = “6"

DO SALES@PRG

CASE CHOICE = “7"

DO PRINT@ PRG

OTHERWISE

DO EXT.PRG

ENDCASE

5% TO ADD NEW INFORMA TION***

CLEAR

STORE SPACE (25) TO PNAME

STORE SPACE (0) TO PCODE

STORE 0 TO PPRICE,PQTY,STCKQTY,PNETQTY
STORE §} TO PDATE

@35.10 TO 20,50 DOUBLE COLO G+

@7,11 SAY “ITEM NAME” GET PNAME

@9,11 SAY ‘ITEM CODE” GET PCODE

@11,11 SAY “NUMBER SOLD” GET PQTY PICT “9999”
@13,11 SAY “NUMBER IN STOCK” GET STCKQTY
PICT “999999” @15,11 SAY DATE SOLD

USE TEXSTOCK DBF

GO BOTTOM

APPEND BLANK

42

REPL NAME WITH PNAME

REPL CODE WITH PCODE

REPL QTY WITHPQTY

REPL QTYINSTO WITH STCKQTY
REPL DTBOUGHT WITH PDATE
CLOSE DATABASES

STORE SPACE (1) TO ANS

CLEAR

@15,20 SAY “Add More Information (Y/N)” GET ANS
READ

IF UPPER(ANS)

DO ADDREC@.PRG

ELSE

DO MAIN@.PRG

ENDIF

Program 3: Computerisation of sales records, case study
of texaco filling station, aghor:

***A PROGRAM TO CONTROL SALES AND
STOCK™ **

#*x* THIS PROGRAM IS WRITTEN BY MR. NELSON C.
ENUONYE*##*

ND II COMPUTER SCIENCE, *#**

SET ECHO OFF

SET STATUS OFF

SET SAFETY ON

SET SCORE OFF

@6,20 TO 16,55 DOUBLE COLO G+

@722 Say “1. Add New Records”

@8.22 Say “2. View All Records”

@9,22 Say “3. View a Single Record”

@10,22 Say “4. Delete a Smgle Record”

@11,22 Say 5. Delete All Records”

@12,22 Say “6. Sales Calculation”

@13,22 Say “7. Print Reports™

@14,22 Say “8. Exit Program” STORE SPACE (1) TO
CHOICE

@18,20 SAY Choose the Option Needed” GET CHOICE
READ

DO CASE

CASE CHOICE = “1"

DO ADDREC@.PRG

CASE CHOICE = «2"

DO VIEW1.PRG

CASE CHOICE = “3"

DO VIEW2.PRG

CASE CHOICE = “4"

DO DEL1.PRG

CASE CHOICE = “5"

DO DEL2.PRG

CASE CHOICE = “&"

DO SALES@ . PRG

Asian J. Inform. Tech., 6 (1): 38-46, 2007

OTHERWISE
DO EXT.PRG

ENDCASE

*#% TC) ADD NEW RECORDS***

STORE SPACE (25) TO PNAME

STORE SPACE (0) TO PCODE

STORE 0 TO PPRICE.PQTY,STCKQTY,.PNETQTY
STORE §} TO PDATE

@5,10 TO 20,50 DOUBLE COLO Gt

@7,11 SAY “PRODUCT NAME” GET PNAME

@9.11 SAY ‘PRODUCT CODE” GET PCODE

@11,11 SAY “QUANTITY SOLD” GET PQTY PICT
“0999”

@13,11 SAY “QUANTITY IN STOCK” GET STCKQTY
PICT “999999” @15,11 SAY DATE SOLD

@15,21 SAY DATE() READ

USE TEXSTOCK DBF

GO BOTTOM

APPEND BLANK

REPL NAME WITH PNAME

REPL CODE WITH PCODE

REPI, QTYINSTO WITH STCKQTY

REPL DTBOUGHT WITH PDATE

CLOSE DATABASES

STORE SPACE (1) TO ANS

CLEAR

@15,20 SAY “AddMore Records (Y/N)” GET ANS READ
IF UPPER(ANS)

DO ADDREC@.PRG

ELSE

DO MAIN@.PRG

ENDIF

Fig. 4: Count for program 1

43

DISCUSSION

Apart from the popularity of some commands which
may cause a degree of sunilarity to be seen, especially
when two programs cater for a similar purpose since the
purpose will often determine the choice of commands
used program 1 18 obwviously different from that of
programs 2 and 3 shown m Fig. 4. This 1s because
even though the need for the 3 programs seems similar,
program 1 is actually written in a style and with command
combinations different to that of 2 and 3. The plot for 2
and 3 are very similar. From an examination of the program
command list and the program listing in the appendix, it
will be seen that a lot of window dressing has been done
to disguise variables and other structures n program 3
copied from program 2 shown in Fig. 5 and 6. As has been
said earlier, in checking on the similarity between
programs, the criterion must be as far as possible be
independent of the modifications that an infringer might
introduce 1n order to disguise the code. Hence the basis
of our comparisons is the reserved words which if altered
will mean going through the rigour of re-writing the
whole program.

Looking at the combined Fig. 3(d), the proof of
similarity is the overlapping between graphs 2 and 3.
The portion of the graph that does not overlap
depicts pomts of commands at which some alterations
made are very obvious. Sometimes, the eye 1s less good
at discerning the relative differences observable in the
plots. According to Derrick (1990), for programs
suspected to be similar from the analysis so far, ploting
the frequency of a command in one program as the

Fig. 5. Count for program 2

Fig. 6 Count for program 3

Asian J. Inform. Tech., 6 (1): 38-46, 2007

am 3
(Prrfr) (15, 15 DO
14
134
12
11-
lg- 9, 9) Case
8-
7 (6,6)8
6-
5. Set(.4)
4453 Rea
3 .
2 42 (15415
(1]:2('{_‘;{.5; d DD
¥ ¥ T L) T T T T 2
012345678 910111213 1415 Frogram2)
Do while, Wait,
Pack, Locate

Fig. 7. Comparison Graph for programs 2 and 3

abscissa and the frequency in the
may better facilitate a comparison.

other as the ordinate

44

In the event that the programs were very identical
then the plotted points would nearly all fall on a line at

Asian J. Inform. Tech., 6 (1): 38-46, 2007

45 degrees to the axis. An example of this is shown in
Fig. 7 where comparisons are made for programs 2 and 3.
The point off the 45-degree line represents the alterations
made to the copied program.

Mathematical technique for correlation counts: The
assessment of frequency distribution can be quantified
mathematically using a correlation count. Taking, for
each command, the mean of the frequency count in each
program and subtracting the difference between the
counts would obtamn a simple measure for similarity.
Expressed mathematically, the measure for similarity
for one command (which for the moment is dependent
on program length) 1s:

where f| is number of repetitions of a command in the first
set of codes (setcodel) and f, for Second set of codes
(setcode 2). For the nth command this is more simply
Wwritten as:
S, - 2D,
2

where 35, is the sum of the repetitions of command » in the
program and D, 1s the difference.

A measure for the whole command sequence is
obtained by summing over all commands and in order to
normalize the measure to be independent of the length of
the program we divide by the number of commands
present in each program, i.e.,

ol
¥s,-2D,
1

Program similarity measure="—"—;

n=l

where N is total number of commands in the program. This
measure 18 1 if the command frequencies m each program
are the same and -1 if all commands in one program are
absent in the other. The measure of similarity for program
2 and 3 15 0.96.

Vijay and Vijay (2006) posited the statistical formula
for correlation is as:

N

(fln 7f1m)(f2n 7f2m)
n=l

[e[S s

f, 1s mean number of repetitions over all commands.

45

The correlation function by this formula will always
be between O and 1 since it 13 not possible to have a
negative number of commands. This technique can be
used to effectively validate the presence of one program
or program module m another program that has been
accused of mfringmg on the nght of an author. A
contribution to the magnitude of the correlation function
of frequency distribution will occur by virtue of the
popularity of certain commands, which will ensure their
use in any program in reasonable numbers.

This contribution will appear to iunply a greater
degree of correlation by virtue of the characteristics of the
medium than in fact oceurs due to similarity of program
function. It implies that the threshold of correlation at
which sunilarity of programs is diagnosed must be
increased, or alternatively the corresponding measure
could be reduced by an amount, which compensates for
the commonality problem. The frequency distribution 1s
therefore more useful when comparing two programs
since 1t 18 independent of the order of routines.

CONCLUSION

After copyrights have been mfringed, it may be
expensive or even difficult to obtain a remedy in
courtroom proceedings. For example, a charge of
copyright mfringement may fail if the court as a defence
accepts reverse engineering. For these reasons, technical
defences (known in legal circles as self-help) will continue
to be mportant for any software developer who 1s
concerned about litigation against infringing parties. Tt is
encouraging to note that in the advanced countries,
software protection 1s becoming a major area of study,
research and professionalism. This should spread also to
the third world countries so that for everyplace and
everywhere, professionals can develop techmcal schemes
that best suit their particular needs.

Software piracy 15 likely to continue so long as it
contimues to be easy, delivers inmediate tangible or
mtangible rewards to the pirate and 1s socially acceptable.
The goal of this paper 15 to develop measures by which
proof of miringement can be established. A combination
of the CoVioChecker and statistical techmiques for
correlation counts will aid in establishing grounds for
itiating legal proceedings agamst any mnfringer.

REFERENCES

Christian, C., 2002, Watermarking, Tamper proofing and
Obfuscation-Tools for Software Protection. IEEE
Transactions on Software Engineering, Vol. 28.

Cormsh, W., 1990. Intellectual Property: Patents,
Copyrights, Trade Marks and Allied Rights.
(2nd Edn.), London: Sweet and Maxwell Limited.

Asian J. Inform. Tech., 6 (1): 38-46, 2007

Derrick, G., 1990. Data identification and authentication
from fingerprints, Computer Law and Security Report,
Vol. 6.2.

Taiyesimi, S., 2002. Protecting proprietary software and
databases. Special Topics m Mathematics and
Computer Science, A Technical Report of
Occasional Lecture Series. Federal University of
Technology, Akure, Nigeria.

46

Longe, O.B., 2004. Proprietary software protection and

copyright 1ssues 1n contemporary mformation
technology. Unpublished master of technology
thesis submitted to the department of computer
science, manuscript.

Vyay, G. and B. Vyay, 2006. Introduction to statistical

methods. India: Prentice-Hall.

