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Adaptive Neuro-Fuzzy Inference System for Modeling Magnetic Hysteresis
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Abstract: The accurate characterization and modeling of magnetic material are critical 1 simulating the
performance analysis of electrical circuits incorporating magnetic components. In this study, a new approach
for modeling hysteresis loop of ferromagnetic material based on Adaptive Neuro-fuzzy Inference System
(ANFIS) was presented. The proposed ANFIS model combined the neural network adaptive capabilities and
the fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The applicability
of the developed method is illustrated in figures. Simulation tests and results will be presented in the following.
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INTRODUCTION

Simulation of hysteretic characteristics of magnetic
materials needs to be implemented mto electromagnetic
field simulation software toocls to predict the behavior of
different type of magnetic equipments. However, there
exist many approaches to develop a mathematical model
to describe the hysteretic relationship between the
magnetization M and the magnetic field H. the first
approach was the hysteresis model of invented Preisach
(1935). The second is the Tiles-Atherton (TA) model,
compared to other models, the JA model has some
advantages:it 1s formulated in terms of differential
equation and it uses only five parameters whose
identification 1s performed from a single measured
hysteresis loop (Jiles and Atherton, 1986). Artificial
intelligence has also been applied to the modeling of
magnetic hysteresis and parameters 1dentification of these
models such as neural network and genetic algorithm
(Wilson et al., 2001 ; Salvin and Riganti, 2002; Salvini and
Coltell, 2001; Vecchio and Salvini, 2000; Xu and Refsum,
1997; Saliah and Lowther, 1997; Dinitre et af., 2001, 2003;
Saghafifar and Nafalski, 2002, Kuczmann and Tvanyi,
2002;). Like neural networks, fuzzy systems (Zadeh and
Fuzzy, 1965) can be convemently used to approximate
arbitrary functions (Buckley and Hayashi, 1994; Kosko,
1992). Neural networks can learn from data, but knowledge
learned can be difficult to understand. Models based on
fuzzy logic are easy to understand, but they do not have
learmng algorithms; learning has to be adapted from other
technologies. A Neuro-Fuzzy model can be defined as a
model built using a combination of fuzzy logic and neural
networks. Recently, there has been a remarkable advance
mn the development of Neuro-Fuzzy models, as it is

described m (Yen and Langari, 1999; Jang et al., 1997,
Abraham, 2001). One of the most popular and well
documented Neuro-Fuzzy systems 13 ANFIS, which has
a good software support ((The Math works, 1998). Jang
(1992, 1993, 1995, 1997) present the ANFIS architecture
and application examples in modeling a nonlinear
function, dynamic system identification and a chaotic time
series prediction Given its potential in building fuzzy
models with good prediction capabilities, the ANFIS
architecture was chosen for modeling magnetic hysteresis
1n this work. In the following sections information is given
about adaptive Neuro-Fuzzy modeling, the JA model for
magnetic material testing system, the selection of ways to
modeling the hysteresis phenomena with Newo-Fuzzy
modeling, results and conclusions.

Jiles-Atherton hysteresis model:

Formulation: The Jiles-Atherton model is a physically
based model that includes the different mechanisms that
take place at magnetization of a ferromagnetic material.
The magnetization M 1s represented as the sum of
the wreversible magnetization M, due to domain wall
displacement and the reversible magnetization M,,, due
to domain wall bending (Jiles and Atherton, 1986). The
rate of change of the ureversible part of the magnetization
1s given by.

dM, (M, —-M)

irr

dH _EBfa(Mme) ()

0

The anhysteretic magnetization M, in (1) follows the
Langevin function (Wilson et af, 2001), which 15 a
nonlmear function of the effective field:

Corresponding Author: M. Mordjaoui, Département d’électrotechnique, Université de Skikda, Algérie



Asian J. Inform. Tech., 6 (1): 95-101, 2007

H,=H+eM

ol

The rate of change of the reversible component is
proportional to the rate of the difference between the
hysteretic  component and the total magnetization
(Salvini and Raganti, 2002). Consequently, the differential
of the reversible magnetization is:

dM_, (
=C

(2

He
da
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dH dH

dM,,  dM
dH

Combining the nreversible and reversible components of
magnetization, the differential equation for the rate of
change of the total magnetization 1s given by:

daM _ 1 (M, -M)
dH 1+05§7G(
Wy

¢ dM,
+
c+1 dH

()
M,, - M)

Before using the J-A model, five parameters must be
determined. The first parameter, ¢, is a mean field
parameter defining the magnetic coupling between
domains in the material and is required to calculate the
effective magnetic field, H, (2) composed by the applied
external field and the internal magnetization. The model
also needs an equation describing the anhysteretic
curve (3) suggests the use of Langevin function. Two
parameters are to be specified and included m the
function, the saturation value of magnetization M, and a
Langevin parameter, a. Hysteresis is added by including
pinning of domain walls, this is done by parameter, k,
defimng the pimng site density, in J-A the puung of
domain wall motion is assumed to be the major
contribution to hysteresis. At this stage only ureversible
magnetization is considered, the last parameter, ¢ defines
the amount of reversible magnetization, due to wall
bowing and reversal rotation, included in the
magnetization process; O 1s a directional parameter and
takes the value +1 for increasing field (dH/dt=0), -1 for
decreasing field (dH/dt<0).

Parameter identification:
Anhysteretic  susceptibility: The  anhysteretic
susceptibility at the origin, can be used to define a
relationship between M, a and «

(dej

dH M=0H=0

(6)

an

96

(7)

Initial susceptibility: The reversible magnetization
component is expressed via the parameter ¢ in the
hysteresis Eq. (4) defined by:

v = dM oM,
S < 5 O S Mo’

Coercivity: The hysteresis loss parameter k can be
determined from the coercivity H, and the differential
susceptibility at the coercive point +,, (H,).

(8)

H)l,, 1
{5 Ja

Remanence: The coupling parameter ¢ can be determined
independently if a is known by using the remanence
magnetization M, and the differential susceptibility at
remanence,

@)

(10)

a 1
x(Mr) - cdM/dH

Adaptive Neuro-Fuzzy Inference System (ANFIS): An
adaptive Neuro-Fuzzy mference system 13 a cross
between an artificial neural network and a fuzzy inference
system. An artificial neural network is designed to mimic
the characteristics of the human brain and consists of a
collection of artificial neurons. An adaptive network 1s a
multi-layer feed-forward network in which each node
(neuron) performs a particular function on ncoming
signals. The form of the node functions may vary from
node tonode. In an adaptive network, there are two types
of nodes: Adaptive and fixed. The function and the
grouping of the neurons are dependent on the overall
function of the network. Based on the ability of an ANFIS
to learn from training data, it 15 possible to create an
ANFIS structure from an extremely limited mathematical
representation of the system.

Architecture of ANFIS: The ANFIS 1s a fuzzy Sugeno
model put in the framework of adaptive systems to
facilitate learming and adaptation (Jang, 1997). Such
framework makes the ANFIS modeling more systematic
and less reliant on expert knowledge. To present the
ANFIS architecture, we suppose that there are two input
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linguistic variables X and Y and each variable has two
fuzzy sets Al, A2, Bl and B2 as 1s indicated in Fig.1, in
which a circle indicates a fixed node, whereas a square
mdicates an adaptive node.

Then a Takagi-Sugeno-type fuzzy if-then rule could
be set up as:

Rule i: Tf (x is A;) and (y is B) then (f, = px + qy + 1))

f, are the outputs within the fuzzy region specified by the
fuzzy rule. p, q and 1; are the design parameters that are
determined during the training process.

Some layers of ANFIS have the same number of
nodes and nodes in the same layer have similar finctions.
Output of nodes in layer-1 is denoted as O], where 1 is the
layer number and 1 18 neuron number of the next layer. The
function of each layer is described as follows:

Layer 1: In thus layer, all the nodes are adaptive nodes.
The outputs of layer 1 are the fuzzy membership grade of
the mnputs, which are given by:

(11)

O =u, (%) i=12,

Ol =p, (y)  i=34 (12)

Where p,; (%), P, (v) can adopt any fuzzy membership
function. For example, if the bellshaped membership
function 13 employed L, (%), 13 given by:

1+{{Xc‘
al

where a;, by and ¢; are the parameters of the membership
function, governing the bell shaped functions
accordingly.

M, (x) = a3

Layer 2: Each node computes the firing strengths of the
assoclated rules. The output of nodes m this layer can be
presented as:

O = =p, Wus () i=12 (14)
Layer 3: In this third layer, the nodes are also fixed nodes.
They play a normalization role to the firing strengths from
the previous layer. The outputs of this layer can be
represented as:

97

i=12 (135)

1 >

Which are the so-called normalized firing levels.

Layer 4: The output of each adaptive node in this layer is
simply the product of the normalized firing level and a first
order polynomial (for a first order Sugeno model). Thus,
the outputs of this layer are given by:

0O = (16)

f=of =@ (pxtqytr) i=12
Layer 5: Finally, layer five, consisting of circle node
labeled with S. 15 the summation of all incoming signals.
Hence, the overall output of the model is given by:

(17)

From the architecture of ANFIS, we can observe that there
are two adaptive layers the first and the fourth. In the first
layer, there are three modifiable parameters {a, b, ¢},
which are related to the mput membership functions.
These parameters are the so-called premise parameters.
In the fourth layer, there are also three modifiable
parameters {p, q, L}, pertaming to the first order
polynomial. These parameters are so-called consequent
parameters (Jang, 1992, 1993, 1995).

Learning algorithm of ANFIS: The learning algorithm for
ANFIS is a hybrid algorithm, which is a combination
between gradient descent and least squares method
(Jang, 1997). For simplicity, the adaptive network has only
one output and is assumed to be

Output = F(I,3) (18)

Where T the set of input variables and S is the set of
parameters. If there exists a function H such that the
composite function H o F 1s linear in some of the elements
of S, then these elements can be identified by the least
squares method. More formally, if the parameter set S can
be decomposed mnto two sets

S=8,@58, (19)

Where @ represents direct sum. Such that H o F 13 linear in
the element S,, then upon applying H to Eq. (18), we have
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H(Output) = He F(I,8) (20)

Which is linear in the elements of S, Now we given
values of elements of 3, the P training data can be
plugged into Eq. (19) and obtain a matrix equation

AX=B

= (21)
Where X is an unknown vector whose elements are
parameters in S, Let |S,| =M, then the dimensions of
A XandB are PxM, Mx1 and Px1, respectively. Smce the
number of training data pairs (P) is usually greater than
the number of linear parameters (M), this i1s an over-
determined problem and generally there 1s no exact
solution to Eq. (21). Instead, a least squares estimate of X
can be sought that minimizes the squared error ||AX-B|*

Based on the ANFIS architecture shown in the
Fig. 1, we observe that the values of the premise
parameters are fixed and the overall output can be
expressed as a linear combination of the consequent
parameters. In symbols, the output f in the Fig. 1 can be
rewritten as

® ¢ (22)
oy + o,

T R
(DlJr(D2

Substituting Eq. (15) into Eq. (22) yields:

£ =Bf +Bf, (23)

Substituting the fuzzy if-then rules into Eq. (23), it
becomes:

f=m(px+tqytr)+m(pxta,ytr) (24

After rearrangement, the output can be expressed as:

F=(@x)p, +(By)q +(® )5+ (25)
+ )

X
(®x)p, +{®y)q, + (@)1,
Which 18 a linear combination of the modifiable

consequent parameters p;, ¢, I, Ps» q; and 1, From this
observation, we have

S = Set of total parameters,
S1 = Set of premise (nonlinear) parameters,
S2 = Set of consequent (linear) parameters

The learning algorithm for ANFIS is a hybrid
algorithm which 1s a combmation between gradient
descent and least-squares method. More specifically, in

98

Table 1: Tnthe backward pass, the error signals propagate backward and the
premise parameters are updated by gradient descendent

Forward pass Backward pass
Premise parameters Fixed Gradient descent
Consequent parameters Least-squares estimator Fixed
Rignals Node outputs Error signals
Layer 1 Layer2 Layer3 Layerd Layer 5

Fig. 1 : Anfis architecture

the forward pass of the hybrid learming algorithm, node
outputs go forward until layer 4 and the consequent
parameters are identified by the least-squares method.
In the backward pass, the emor signals propagate
backward and the premise parameters are updated by
gradient descendent. The Table 1 summarizes the
activities in each pass.

The consequent parameters are identified optunal
under the condition that the premise parameters are fixed.
Accordingly, the hybrid approach converges much faster
since it reduced the search space dimensions of the
original pure backpropagation method.

Approximating magnetic hysteresis

Simulation: The differential Eq. (5), which in its original
form has derivatives with respect to H, was reformulated
into a differential equation in time by multiplying the left
and the right sides by dH/dt, thus resulting in:

dM_ 1 dH (My-M) ¢ dM
dt  l+ec dtﬁ_kfa_(Mme) ltc dt
My

an

(26)

This reformulation allows for the determmation of
magnetization by use of Runge Kutta method in Matlab
environmernt.

To calculate the magnetic flux density B from M and
H, the following constitutive law of the magnetic material
property is used.

B=uH=puH =y, (H+M) (27

Where 1, = 4.71.107 (H/m) is the permeability of free space
and p, 18 the relative permeability.
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Normalized magnetic induction versus time
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Fig. 2: (a) Normalized magnetic field and magnetic versus
time (b) Normalized magnetic induction versus
time

The BH curve results of simulation of the Tiles-
Atherton model will be used as ‘experimental data’ to be
approximate by proposed Neuro-Fuzzy model.

Proposed model: In this study, the learming ability of
ANFIS 18 verified by approximating a hysteresis of
magnetic material. The data set used as input/output pairs
for Anfis was generated by Tiles Atherton model for ferrite
core described m (Emilio et af., 2000) with sinusoidal
magnetic field as an input H(t) and magnetic field B(t) as
output (Fig. 2a and b).

Our purpose is to predict the magnetic hysteresis
cycles using 12 candidate inputs to ANFIS : B(t-i) for
i=1:5andH{t-j) for j=1:7. Converted from the original data
sets containing 353 [H(t) B(t)] pairs.

Tn the first time, we suppose that there are two inputs
for ANFIS and we have to construct 35 ANFIS models
(5x7) with various mput combmations and then select the
one with the smallest traimng error for further parameter-
level fine tuning. In Table 2 we can see that the ANFIS
with B4 and H1 (in red) as inputs has the smallest tramning
eITor, so it 1s reasonable to choose this ANFIS for further
parameter tuning. Note that each ANFIS has four rules
and the training took only one epoch each to identify
linear parameters. Let us note that the computing time for
selecting the good model is 3.6250s.
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After selection of the good and adapted model, we
made tramn the network 100 epochs, for this purpose we
have used 173 pawrs as traimng data and 173 pairs for
checking, shown in Fig. 3.

The number of MFs assigned to each mput of the
ANFIS was set to two bell type, so the number of rules 1s
04. The training was run for 100 iterations, the network
performance were evaluated on the checking set after
every iteration, by calculating the Root-Mean-Square
Errors (RMSE).

Where k is the pattern number, k = 1,.. K. The RMSE was
also evaluated on traimng data set in every iteration. The
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optimal number of iteration was obtained when checking
RMSE has reached its mimmum value 0.0069 after 11

epochs Fig. 4.

Table 2: The ANFIS with B4 and H1

Model Trainingm error Checking error
Bl HI 0.00003 501930205 0.00005237387113
Bl H2 0.01007440714157 0.00800225277619
Bl1H3 0.01752470640605 0.01198431179800
Bl H4 0.02426970100209 0.01536326214534
B1 Hs 0.03081731046969 0.01927371816614
Bl Hs 0.03748876601555 0.02457067414985
B1H7 0.04436386215981 0.03166533456145
B2 H1 0.00003 762707899 0.00004451505598
B2z H2 0.01376365775729 0.01540601381771
B2 H3 0.01934001717874 0.01439440856647
B2 H4 0.02538261513892 0.01671041089325
B2 HS5 0.03139732428427 0.02005410243223
B2 Hs 0.03756279016798 0.02477985332016
B2H7 0.04401096250169 0.03141151576432
B3 HI 0.00003 246300868 0.00003736685372
BiH2 0.01067960934829 0.01890881385189
B3 H3 0.02674500025744 0.02918359625911
B3 4 0.02785874502310 0.01994937304432
B3 Hs 0.03281732981992 0.02186208656381
B3 Hs 0.03831184619918 0.02609472281251
B3 H7 0.04411128584929 0.03227491110643
B4 H1 0.00002571202168 0.00003254290855
B4 H2 0.00948091974762 0.01022982236350
B4 H3 0.02157909185014 0.03958605040899
B4 H4 0.03886365068660 0.04253883911318
B4 H5 0.03576665521093 0.02568298961189
B4 Ho 0.04004473571704 0.02826405796018
B4 H7 0.04507868818210 0.03399955457224
B5 H1 0.00003396289474 0.00003924291522
BsH2 0.00910245284031 0.00666069608720
B5 H3 0.01676944380416 0.01102022047559
Bs H4 0.02386189227013 0.01483177779224
B5 Hs 0.03077981 552004 0.01932591344086
B5 Hs 0.03774316641094 0.02536369036347
B5H7 0.04473822577434 0.03453095956642
Step sizes
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0.127
0.1
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0.021
0 t T S—
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Fig.5: Initial and final generalized bell-shaped

membership function of input 1 and 2 for the Best

model

Figure 5 depicts the initial and final membership
functions for each mput variable. The anfis used here
contains a total of 24. fitting parameters, of which 12 are
presmise (nonlinear) parameters and 12 are consequent
(linear) parameters. Table 2 summarize all characteristics of
the network used.

The ANFIS shown in Fig.l was implemented by
using MATLAB software package ( MATLAB version 6.5
with fuzzy logic toolbox), it uses 346 traming data in 100
training periods and the step size for parameter adaptation
had an mitial value of 0.1. The steps of parameter
adaptation of the ANFTS are shown in Fig. 5.

The obtained ANFIS network was evaluated on, the
complete data set using Ts = 0.76 s and resulted 1n a good
prediction with RMSE = 0.0026, Fig. 6.

Initial MFs on X Initial MFs on Y
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Fig. 6 . Adaptation of parameter steps of ANFIS
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Fig. 7. Hysteresis curves
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RESULTS

We have successfully developed, implemented and
tested a neurofuzzy system for predicting the magnetic
hysteresis of ferromagnetic core. Tt is clear that the system

output closely approximates the required hysteresis

output by Jiles-Atherton model show in Fig. 7.
CONCLUSION

The proposed model i1s an altemative and less
complicated approach in determiming the magnetic
properties of ferromagnetic materials with good accuracy.
The collection of well-distributed, sufficient and
accurately measured mput data 1s the basic requirement to
obtain an accurate model. The adequate functioning of
ANFIS depends on the sizes of the training set and test
set. Simulation result revealed that neuro-fuzzy model
capable of closely reproducing the optimal
performance. In the future studies, we will incorporate this
model on the finite element procedure for modeling
electromagnetic devices.

was
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