M Asian Journal of Information Technology 6 (10): 1010-1014, 2007
We]l

ISSN: 1682-39015

Online

© Medwell Journals, 2007

Estimating Software Cost from Prototyping,
Change Impact Analysis and Experience using XP Methodology

0.0. Olugbara, 0.0O. Ekabua and M.O. Adigun
Department of Computer Sciences, University of Zululand, South Africa

Abstract: Software Cost Estimation (SCE) 1s an arduous task in software engineering that has become even
more arduous for Business Software Development (BSD) due to changing requirements. The SCE models
proposed in literature incorporate software size, approximated by Source Lines of Code (SLoC) or Function
Point (FP). However, size estimation for a large portion of software takes time and 1s as arduous as cost
estimation. This study mvestigates Adaptive Prototyping (Adapro) method that uses probability distribution
to estimate software size, given an 1nitial size of its prototype and the number of changing requirements. The
method demonstrates the usefulness of Change Tmpact Analysis (CTA) in SCE. The accuracy of the method was
validated with Rayleigh, Exponential and Logistic distributions on real-life projects. The result shows that
Logistic and exponential distributions are suitable size estimators when compared to Rayleigh distribution, but
Logistic distribution converges faster to the actual software size than exponential distribution.

Key words: Business requirements, extreme programming, change impact analysis, software prototyping, cost

estimation, probability distribution

INTRODUCTION

The generation of Business Software Requirements
(BSR) has become a very rigorous effort due to
unpredictable nature of BSR. The process of BSR
elicitation involves the collective effort of both the
developers and the customers to achieve a maximum
delivery satisfaction. Micro economics reports that about
25% of all software projects are unable to be delivered
because of changes m requirements, lack of tune and
resources. In most cases, where time and cost are
estimated for a software project, neglect 1s always given
to changes resulting from addition of requirements.
Practical experience shows that addition of requirements
often increases effort and elongates delivery time, but this
situation is often overlook.

Present experience in using extreme Programming
(XP) methodology (Beck, 1999) for BSD shows that
customers interest in the project depreciate, resulting to
the mtroduction of ncentives to get their maximum
cooperation. These mcentives result to changes, which
have considerable impact on the overall cost of
development. XP, unlike most traditional methodologies
places a higher on adaptability than on
predictability. The propenents of XP regard ongoing

value

changes to software requirements as a natural norm and
a desirable aspect of software development projects.
Software requirements must always change as there are
always new evolving requirements during the
development process. Changing requirements are endemic
to software (Davis, 1989) and many researchers have
written about software changes and their consecuences
(Boehm, 1987). Final requirements seldom exist for
software systems since they are continually being
augmented to accommodate changes in user expectations,
operational environment and the like. The ability to adapt
to changing requirements at any pomt during the
development cycle is therefore, a more realistic approach
than attempting to define all requirements at the
beginning of the project and then expending effort to
control changes to the requirements.

Estimating the cost of a software project at the
begining of contracting affect an effective methodology
for CTA. The CIA approach suggests that, since changes
must always be made during the development, the impact
analysis techmque with respect to changes must set lower
and upper boundary limits for accommodating the
desirable changes. The more the changes, the more the
time and effort expended m the project. For effective CLA,
appropriate models are required (Zhai, 2002). Hence, a

Corresponding Author: 0.0. Ekabua, Faculty of Business, Computing and Information Management,
Centre for Systems and Software Engineering, London South Bank University,
103 Borough Road, London SE1 OAA, United Kingdom
1010



Asian J. Inform. Technol., 6 (10): 1010-1014, 2007

balance CTA model should provide limits beyond which if
changes are made would result to increase in development
cost. CTA further requires that customers and developers
need to know about the underlying model and rules.
Additionally, CIA recommends that since services are
contractual and not freely provided, they must be offered
at a relevant level of granularity that combines appropriate
flexibility with ease of assembly into the busmess
process. On a summary, CTA proposes an increase cost
for out-of-boundary changes. As the out-of-boundary
change increases, the cost impact propagates or ripples.
Consequently, the problem of accurately estimating
cost iz a serious task for software engineers. But,
organizations wishing to out-source their software
projects would be highly interested in a cost estimate
before a commitment is made. The ability to rapidly build
a software prototype and derive cost estimate from the
size of the prototype will assist the engineers a lot. The
objective of this research is development of an adaptive
cost method able to incorporate changing requirements.

Related work: The cost estimation techniques for large
mformation systems use SLoC or FP to calculate software
effort in person-months (Boehm, 1981 ). The Constructive
Cost Model (COCOMO) (Boehm, 1981; Boehm et al.,
2000) 18 a popular cost estimation model based on SLoC.
The model supports the estimation of cost, effort and
schedule slippage when planning a new project. The
relationship between software size, effort and time was
presented to be non-linear in Putnam and Myers { 2000).
Stepwise regression was suggested to be a better
prediction model than linear regression (Mendes and
Mosley, 2001).

The FP is a very popular model of estimating the cost
of software, especially in the early stage of the product
cycle (Albrecht, 1979). The Putnums Software Life Cycle
Management (SLIM) (Putnam, 1978) is based on the
Rayleigh’s function and 1s suitable for large projects. The
Albrecht FP model assumes that effort is mainly related to
the size of the component to be changed (Niessink and
Vliet, 1979). In a different opinion, the size of the change
and the size of the component to be changed are equally
important (Niessink and Vliet, 1988). An early cost
estimation based on requirements alone was proposed in
(Mukhopadhyay and Kekre, 1992). The research reported
in Henry et al (1996) proposed that the number of
requirements changes that occur during maintenance can
be used to improve effort estimates.

Artificial Tntelligent (AT) techniques have recently
found useful applications in software economics. The
comparison of machine learning techniques in building
effort prediction systems was carried out in Mair et al.
(2000). An effort has been made to apply fuzzy logic in
building software metrics for cost estimation (Gray and

McDonell, 1997). Attempts have also been made to
evaluate the potential of genetic programming in cost
estimation (Burgess and Lafley, 2001).

The maintenance effort for a software application
depends on measurable metrics that can be derived from
the software development process (Hayes et al., 2004).
The keen interest in adopting a user-centered agile
software development methodology such as XP for BSD
has raises new challenges for cost estimation. The
requirements for business applications exhibit high degree
of unpredictability. These applications involve many
stakeholders with divergence opinions and the users of
the applications are the primary sources of requirements
generation. XP focuses on active involvement of end-
users of a business application, user-derived feedback
and iterative development whereby prototype software is
rapidly developed, tested and modified. The cycle goes
on until the final product is delivered to the customer.
This methodology can result into a better design and
significantly yields a satisfactory product. But, frequent
changes coming from the customer can lead to
complication and overly delay in the software realization,
because as new requirements are discovered during
iterations, it is expected that software cost will be affected
as well.

The Adapro cost estimation method mvestigated in
this paper uses SLoC for the size of the prototype
software developed from the initial requirements. The
number of customer influenced changes that occur during
maintenance was used to improve cost. This method is
different from the estimation methods derived from past
projects data (Pressman, 2001 ). While cost methods based
on previous data may be appropriate for off-the-shelve
applications, there is a high probability that past data
either do not exist or are inaccurate for cost estimation in
the case of BSD. Hence, one is faced with the challenge of
trying to adapt an existing method to a new environment.
Consequently, cost models based on prototyping are of
great importance in BSD, which has its peculiarities.
Adapro relies on rapid prototyping and mutual consensus
between the developers and customers to amive at
satisfactory  cost  estimation. A distinguishing
characteristic of Adapro is the ability to extend an existing
cost model to a new development environment by
allowing estimation based on changing requirements.
Once an accurate size estimate is obtained, an existing
cost model can be employed to calculate cost.

THE ADAPTIVE PROTOTYPING COST
ESTIMATION

There exists a number of software cost models that
can estimate the amount of effort and time required for
software development. The estimated effort is converted

1011



Asian J. Inform. Technol., 6 (10): 1010-1014, 2007

Table 1: SCE models
Model name

Intermediate COCOMO 81
Walston-Felix Effort = 502 (KSLoC)™*!
Simplified slim Effort = 56.4B (1000 KSLoC/P)™"
Doty Effort = 5.288 (KSLoC)' %7

Effort equatio
Effort = a (KSLoC)

into cost by multiplying it with an average labor rate.
There are basically two classes of empirically validated
software cost models and they calculate cost as a
function of software size. These models include those that
use SLoC to estimate software size and those that do not.
The main problem with SLoC-based metrics that has led to
the development of non-SLoC-based is the difficulty in
estimating SLoC. But due to quantitativity and seeming
objectivity, they are of interest to researchers. Adaptive
cost models able to account for changing requirements as
a result of customers mvolvement m the project is
preferable to predictive cost model, because software size
can be affected by changing requirements. Table 1 depicts
some existing SCE models that use SLoC for cost
estimation.

Under the assumption that the impact of changing
requirements diminishes as the project advances, the
estimation process can be described by a probability
distribution. The probability, p(x) as a function of the
number of changing requirements, x that the expected size
(Size,) of software approximates the cbserved size (Size)
can be given by the following relation.

5
p(x) = s (1)
Size
Thus,
S
Size = s 2
pix)

Let W(t) be the cumulative amownt of effort required
for estimation mn the time mterval (0, t). The function W(t)
is described by Exponential, Rayleigh and TLogistic
distributions respectively as follows (Huang et al., 1997):

Wit) = 0:(1 - gl °)) (3)
Blec+ o’

Wih=all-e ? (4)

_ o 5)
M e

The value P is the scale parameter, « is the amount of
estimation effort to be consumed, A 1s a constant, ¢ is
called the level of change, which 1s defined as the number
of changes that a customer can mfluenced without
incurring extra cost. For a constant 0 the variables x and
t are assumed to be related as follows.

t=0x+c (6)

The equations used for size estimation were obtained
by substituting Eq. 3-5 into 2. Thus:

a

———=—_ Exponential estimator
1-Fero

Size(x) = Rayleigh estimator 7

Eﬂ.
-B(Ox+c)’
l-e 2

E, (1 + e ), Logistic estimator

The value E, = Size/w is taken as the size of the software
prototype. The robustness of the method was improved
upon using Least Square Sum (I.SS) to fit data. The
evaluation formula 1 as a function of parameter set is:

Mimimize yi(8) = i[wi -W(xi)]2 (8)

i=]

Apparently, usmng Logistic distribution for instance,
Eq. 8 yields:

1n 2
Minimize Wik, A, A,) = Z[Sizei “E_(1-, e”zxi*lﬁ))} 9

i=1

Given the observed (Size,) and the actual (Size,) sizes, the
accuracy of the method was determined using a
Magnitude of Relative Error (MRE) (Conte et al., 1986):

MRE — |Sizea. - Sizeu| (10)
Size

a

NUMERICAL ILLUSTRATIONS

To validate the Adapro method with the probability
distributions mvestigated, on different
software projects were performed. The result reported in
this study 138 a Ci++ Bulder 6 business application
software. The implementation of the project was divided
into several of activities such as Graphical User Interface

experiments

1012



Asian J. Inform. Technol., 6 (10): 1010-1014, 2007

7000 —g— Rayleigh
6000 —&— Logistic
§ 5000 —ii— Exponential
4000
é 3000
2000
1000
D 1 T T L] L] T 1
0 20 40 60 80 100 120

No. of changes

Fig. 1: Estimated size versus number of changes

Table 2: Count of prototype size and changing requirements

Development activity Size (KSLoCh Changes
GUI design 473 30
GUI design+DBD 493 49
GUI design+DBD+DBB 501 57
Other activities - 62

(GUI) design, DataBase Development (DBD), DataBase
Binding (DBB), User Report Design (URD), Software
Logic Design (SLD), Prototype System Testing (PST),
Software Code Refactoring (SCR) and Overall System
Testing (OST). Table 2 depicts the parameters of the
prototype software whose actual size 18 approximately
800 KSLoC.

The planning game session of the XP methodology
was used to resolve a number of issues mcluding the
acceptable value of ¢. For all projects developed f =0.01,
A =150 =1.0and for this particular example ¢ = 40. It
was discovered that large number of changes were made
during GUI designed followed by DBD. During the
development, different data forms were presented by the
customers to minimize the number of changes. The
simplicity of use of the application was a top priority
concerned of the customer and this led to more changes
being mfluenced durng GUI design. The customer
influenced changes were very minimal during SL.ID and
most changes were actually influenced by the developers
during this activity.

Figure 1 shows the plot of estimated/observed
agamst the changing
requirements. Figure 2 shows the corresponding plot

software size number of

of error against the number of changing requirements.
From the
distributions give good estimates of software size than

figures, TLogistic and Exponential
Rayleigh distribution, but Logistic distribution converges
faster to the actual software size than Exponential

distribution.

—&— Rayleigh
—&— Logistic

0 29 40 60 80 160 120
No. of changes

Fig. 2: Estimation error versus number of changes
CONCLUSION

In this study, we have mvestigated a method for
estimating software size and error to perform adaptive
maintenance of business applications based on change
impact techmque. We applied the method to several real-
life projects, which produced acceptable cost estimate
consensus between the developers and the customers of
the business applications. Finally, both Logistic and
exponential distributions are suitable for prototyping
business requirements when compared to Rayleigh.
Conclusively, estimating software size from prototyping
can be an effective approach for cost estimation in a
business software project.

REFERENCES

Albrecht, A.J., 1979. Measuring Application Development
Productivity. Proceedings SHARE/GUIDE IBM
Applications Development Symposium, pp: 14-17.

Beck, K., 1999. Embracing change with extreme
programming. TEEE. Comput., 32: 70-77.

Boehm, B., 1987. Improving Software Productivity. TEEE.
Comput., pp: 43-57.

Boehm, B.W., 1981. Software Engineering Economics.
Prentice Hall, New York.

Boehm, B., E. Horouitz, R. Madachy, D. Reifer, BK. Clark,
B. Steece, AW. Brown, S. Chulam and C. Abts, 2000.
Software Cost Estimation with COCOMO I1. Prentice
Hall, New York.

Burgess, CJ. and M. Lefley, 2001. Can Genetic
Programming Improve Software Effort Estimation? A
Comparative Evaluation. Inform. Software Technol.,
43: 863-873.

Conte, S., H. Dunsmore and V. Shen, 1986. Software
Engineering Metrics and Models. Benjamin/

Cummings.

1013



Asian J. Inform. Technol., 6 (10): 1010-1014, 2007

Davis, A, 198%. Software Requirements: Analysis and
Specification. Prentice-Hall, New Jersey.

Gray, A. and 3.G. MacDonell, 1997. Applications of
Fuzzy Logic to Software Metric Models for
Development Effort Estimation. Proceedings of
the 1997 Annual Meeting of the North American
Fuzzy Information Processing Society NAFIPS.,
Pp: 394-3995.

Hayes, H.I., S.C. Patel and L. Zhao, 2004. A Metric-Based
Software Effort Model. IEEE
Proceedings of the 8th European Conference on

Maintenance

Software Maintenance and Reengineering.

Henry, 1., R. Blasewitz and D. Kettinger, 1996. Defining
and implementing a measurement-based software
maintenance process. Software Maintenance: Res.
Practice, 8 79-100.

Huang, C., 8. Kuo and I. Chen, 1997. Analysis of a
software reliability growth model with logistic
testing-effort function. Proceedings of the Eighth
International Symposium on Software Rehability
Engineering, 2: 378-388.

Mair, C., G. Kadoda, M. Lefley, K. Phalp, C. Schofield,
M. Sheppard and S. Webster, 2000, An investigation
of machine learmng based prediction systems. I. Sys.
Software, 53: 23-29.

Mendes, E. and N. Mosley, 2001. Comparing effort
prediction models for web design and authoring
using boxplots. Proceedings of the 24th Australasian
Conference on Computer Science, Gold Coast,
Queensland, Australia, pp: 125-133.

Mukhopadhyay, T. and S. Kekre, 1992. Software
effort models for early estimation of process
control applications. IEEE. Trans. Software Eng.,
18: 915-924.

Niessik, F. and H.V. Vhet, 1997. Predicting Maintenance
Effort with Function Points. International Conference
on Software Maintenance.

Niessink, F. and H.V. Vliet, 1988. Two case studies in
measuring software maintenance. Proceedings of the
International Conference on Software Mamtenance,
pPp: 76-85.

Pressman, R.S., 2001. Software engineering. A
Practitioner’s Approach, McGraw-Hill.

Putnam, I..A., 1978 General empirical solution to the
macro software sizing and estimating problem. IEEE.
Trans. Software Eng., 4: 345-361.

Putnam, L.H. and W. Myers, 2000. What We Have
Learned. Crosstalk.

Zhao, T., 2002. Change impact analysis for aspect oriented
software evolution. Proceeding 3th International
Workshop on Principles of Software Engneering,
Orlando, Florida.

1014



