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Abstract: In this study, we define the mega series of 2 distinct types of discrete logarithms i the free groups
and design a public key cryptosystem, whose security is based on the difficulty of sclving not only the 1 or
2 or 3 or ...any number of discrete logarithms, but the mega series of 2 distinct types of discrete logarithms in
the free groups. Thus the proposed public key cryptosystem becomes mega secured. Mathematics Subject

Classification Number: 94A60.
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INTRODUCTION

We propose the mega series of the 2 distinct types of
discrete logarithms in the free groups with the help of our
Theorem 1. Then after, we design a public key
cryptosystem, whose security 13 based on the proposed
problem that is solving the difficulty of the mega series of
the two distinct types of discrete logarithms in the free
groups. It means, our public key cryptosystem providing
the mega security, because its security 1s based on the
mega series of 2 distinct types of discrete logarithms in
the free groups.

In concise, our main proposed research of this study
1s following;

*  To define the mega series of the two distinct types of
discrete logarithms i the free groups with the help of
our Theorem 1.

¢+ To design the mega secure public key cryptosystem
based on the above proposed problems.

PRELIMINARIES

The examples of discrete logarithms: Discrete logarithms
are perhaps simplest to understand mn the group (Z)".
Thus 15 the set of integers {1, ..., p-1} under multiplication
modulo the prime p.

If we want to find the kth power of one of the
numbers n this group, we can do so by finding its kth
power as an integer and then finding the remainder after
division by p.

This process is called discrete exponentiation. For
example, consider (217} . To compute 3* in this group, we
first compute 3* = 81 and then we divide 81 by 17,
obtaining a remainder of 13. Thus 3* = 13 in the group
(217"

Discrete logarithm 1s just the inverse operation:
Given that 3* =13 (mod 17), what is the k that makes this
true? Actually, there are infinitely many answers, due to
the modular nature of the problem; we typically seck the
least nommegative answer, which 1s k = 4.

The definition of discrete logarithms: G be a finite cyclic
groups with n elements. We assume that the group 1s
written multiplicatively. Let b be a generator of G; then
every element g of G can be written in the form g = b* for
some integer k. Furthermore, any 2 such integers
representing g will be congruent modulo n. We can thus
define a function,
log,: G =7,

(Where, 7, denotes the ring of integers modulo n) by
assigning to g the congruence class of k modulo n. This
function is a group isomorphism, called the discrete
logarithm to the base b.

The famihiar base change formula for ordinary
logarithms remains valid: If ¢ 13 another generator of G,
then we have,

log. (g) = log. (b). Log, (g)

No efficient algorithm for computing general discrete
logarithms) log, (g) is known. The naive algorithm is to
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raise b to higher and higher powers I until the desired g
1s found; this 1s sometimes called trial multiplication. This
algorithm requires nmning time linear n the size of the
group G and thus exponential in the number of digits in
the size of the group.

More sophisticated algorithms exist, usually mspired
by smnilar algorithms for mteger factorization. These
algorithms run faster than the naive algorithm, but none
of them runs in polyomial time. The following are the most
popular and effiecient algorithms;

+  Baby-step giant-step algorithm.

*  Pollard’s rho algorithm for lorarithms.
*  Pohlig-Hellman algorithm.

* Index calculus algorothm.

*  Numberfield sieve.

*  Function field sieve.

Computing discrete logarithms 1s apparently difficult
(no efficient algorithm 15 known), while the nverse
problem of discrete exponentiation 1s not (it can be
computed efficiently using exponentiation by squaring,
for example). This asymmetry is analogous to the one
between integer factorization and nteger multiplication.
Both asymmetries have been exploited in the construction
of cryptographic systems.

Popular choices for the group G in discrete logarithm
cryptography are the cyclic groups (Zp),; see Elgamal
encryption, Diffie-Hellman key exchange and the Digital
signature scheme. Newer cryptography applications use
discrete logarithms in cyclic subgroups of elliptic curves
over finmite fields; see elliptic curve cryptography.

Free groups, free products, generators and relations: In
thus study, we show that free objects (free groups) exist in
the (concrete) category of groups and we shall use these
to develop a method of describing groups in terms of
“generators and relations”. Tn addition, we indicate how
to construct coproducts (free products) in the categary of
groups.

Given a set X we shall construct a group F that is free
onthe set X. If X = @, F is the trivial group (& If X + @, let
X' be a set disjoint from X such that [X]| = |X"'|. Choose a
bijection X —X"' and denote the image of xeX by x'.
Finally choose a set that is disjeint from X U X' and has
exactly one element; denote this element by 1. A word on
X is a sequence (a,,a,,...) with a,eXU X' U {1} such that
for some neN*, a, = 1 for all k>n. The constant sequence
(1,1,...) is called the empty word and is denoted 1. A word
(a, a,...) on X is said to be reduced provided that,

»  ForallxeX, x and x ' are not adjacent ( that is a, = x =
a.. = x for all (ieN*, xeX) and
» a, =1 mmplies a, = 1forall [>k

In particular, the empty word 1 1s reduced.

Every nonempty reduced word is of the form,
M oM L x™m 1,1, where neN*, x e Xand A=+
1. Hereafter we shall denote this word by x,*', x,™ .. x,. ™"
This new notation is both more tractable and more
suggestive. Observe that the definition of equality of
sequences shows that 2 reduced words x,*' .., x,*"and
vy (%, veX A, O, =+ 1) are equal if and only if both
arelorm=nand x =x, A, =9, foreach1=1,2,... n.
Consequently the map from X into the set F(X) of all
reduced words on X given by x»+ x' =x a is injective.
We shall identify X with its image and consider X tobe a
subset of F(X{).

Next we define a binary operation on the set F = F(X)
of all reduced words on X. The empty word 1 1s to act as
an 1dentity element (wl = 1w = w for all weF). In formally,
we would like to have the product of non empty reduced
words to be given by juxtapositior, that 1s,

Al Am a &n
SRR TS CAN LS
Al Am &l &
=X LKy Y Y.

Unfortunately the word on the right side of the
equation may not be reduced. Therefore, we define the
product to be given by juxtaposition and (if necessary)
cancellation of adjacent terms of the form xx' = x x; More
precisely, if x"' .x" and y* ..y are non empty
reduced words on X with n, m_< let k be the largest integer
(0O<k<m) such that

. B .
X ™= Xm: forj=1,...k-1

Then defme the following relation,
XIM . "meklmik Yk+1

[
Ly, ik <m;
(xlll...xmm)(ylﬂ...yn&“):

Bk+1

Gm+1 on .
Yoo oy, i k=m<n;

Lif . k=m=n.

If m > n, the product 1s defined analogously. The
definition insures that the product of reduced words is a
reduced word.
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The definition of free groups: If X is a non empty set
and F = F(X) 1s the set of all reduced words on X, then F
15 a groups wunder the defined binary operation and
F=X.

The group F = F(X) 1s called the free group on the
set X. The terminology “free” 1s explained as follows.

Let F be the free group on aset Xand T: X »F
the inclusion map. If G is a group and f: X—ga map
of sets, then there exixts a unique homomorphism of
groups such f: F = G that ft = f. In other words,
Fis free objects on the set X m the categary of
groups.

THE MEGA SERIES OF TWO DISTINCT TYPES OF
DISCRETE LOGARITHMS IN FREE GROUPS

In this study, we define the mega series of 2 distinct
types of discrete logarithms in free groups, with the help
of the following important theorem;

Theorem 1: Tf, the following relations is defined in the free
group F,

Al

A=k G+ 1
XXk ¥at

Mok, M)y, )= Ly if k <m;
1 - N B 1 o
ym+1 + yn jlf’k:m<n;

1if, k=m=n.

then, the mega series of the 2 distinct types of discrete
logarithms are defined as follows;

+ To compute the values of 11, 12,..., Im is the mega
series of first type of the discrete logarithms.

¢+ To compute the values of dl, d2,..., dn is the mega
series of second type of the discrete loarithms.

Proof: We know that, the following relations are defined
in the free groups,

Al A=k
Xl "'X‘m—k Yk+1

&n .
Ly ik <m

B+l

(x M...Xm?“m)(y a...ynf’“):
: : ym+15’"+1...yn&“,if,k:m<n;

1if, k=m=n.

Now, we study the following three individual cases,
which are related to the above relations,

Case 1:
If, k<m,
Then,

Al Am a &n Al ham =k e+l &n
Oy Ly, X X T Ve Y
Al =l G+l o1
A s K Epe Vieer o ¥a o
=x".x,"")= o =
Al ham =k ak+1 &n
:>X11:X1 Kok Yia ’ o
1 a &n Am
¥y, ™)
Al A=k ak+1 &n
—x ln:X1 Xk = ¥in ’ —¥a
1 61 bn Al
v 7y, )

Above, we find the mega series of first type
of discrete logarithms, which can be represent as
follows;

“To compute the values of A,, A,,..., A, is the mega
series of first type of discrete logarithms™.

Again,
If, k<m;

ke,
(xMox )yt ey, =k M x0Ty Sy

Al Am-k Ble+l &n
"'Xm—k Yk+l Yn )

Al hn
(x,".x,")

Al hm-k ok+1 &n
1 "'Xm—k yk+l Yn

xMox, My, ™)

X
=iyt .y ==

s X

Al am-k ak+1 on
XX
&t -
= y 1 m-k yk+l Yn

: (v, "y,

Above, we find the mega series of first type

of discrete logarithms, which can be represent as
follows;
“To compute the values of &, d,,..., §, is the mega

series of second type of discrete loarithms”.

Case 2:
If, k=<m;
Then,
(C T D[ R0 e S (IR S
B+l &n
v Y
=(xM. g, M= tad
1 v, "y,
Bm+1 &n
S ST £
A A C Wy
—=x 7\11"1: Ym+lfym+1 Yn&n

m (yl 51“.yn€m)(xlll)
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Above, we find the mega series of first type of
discrete logarithms, which can be represent as follows;
“To compute the values of A, A,,..., A, 1s the mega series
of first type of discrete logarithms”.

Again,
If, k=m =<n,
Then,

&n

RS Sl TG TR e CI TR, A

G+l &n
Ym+1 yn

:>(Y1 51---Yn€m): (x M m) s
Xy,

N y 51: Ym+15m+1“'Yn&D
oMY

&m+1

&n
—vy w_ You - Ya

oMMy

Above, we find the mega series of second type of
discrete logarithms, which can be represent as follows;

“To compute the values of 8, §,,..., 8, is the mega
series of second type of discrete logarithms”.

Case 3:
If. k=m=n,
Then,

(xlll...xmm)(yla...yns“): 1,
:(X1M---Xmm)(Y1a---yn&n): L
w1
CARASE
Al — 1
S AR Rl

= (x,"..x

m

=X,

hm 1

Tyt

Above, we find the mega series of first type of
discrete logarithms, which can be represent as follows;
“To compute the values of A, A,,..., A, is the mega
series of first type of discrete logarithms”.
Again,
If, k=m =<n,
Then,

(x M %, ™0y v, ™=,
é(xlll...xmlm)(ylﬁ ...ynsn): 1,

1
={xM.x )

o 1

=Yy T ames ele
(XIM ...Xmm)(yfl)

In above, we find the mega series of second type of
discrete logarithms, which can be represent as follows;
“To compute the values of 8, d,,..., 8, is the mega
series of second type of discrete logarithms”.
Thus, we clearly see that,
If, the following relations is defined in the free group F,

Al am=k
Xl "'Xm—k y}ul

Bn .
Ly bk <mg

ak+1

M Wy Ly, B
1 1 ymfm”...ynf’",if,k:m<n;

Lif . k=m=n.

Then, there are the mega series of the two distinct
types of discrete loarithms are involves in all the three
cases individually, which can be represent as follows;

+ To compute the values of A, A,,..., 4, 18 the mega
series of first type of the discrete logarithms.

s To compute the values of 8, 8,,..., 8, is the mega
series of second type of the discrete logarithms.

This completes the proof.

THE PROPOSED MULTI-OPTIONAL SELECTION
OF ANY DISCRETE LOGARITHMS FROM THE
MEGA SERIES OF TWO DISTINCT TYPES OF
DISCRETE LOGARITHMS BASED PUBLIC KEY
CRYPTOSYSTEMS

In this study, we give the concept to design the mega
secure public key cryptosystems. In this special idea, our
proposed public key cryptosystems providing the mega
security, because the security of our public key
cryptosystem 1s based on the random selection of any
discrete logarithms from the mega series of 2 distinct
types of discrete logarithms in the free groups.
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Thus, we proposed the multi-optional selection of
any discrete logarithms from the mega series of the 2
distinct types of the discrete logarithms based public key
cryptosystems, with the help of our Theorem 1.

The key generation:

*  Select the free group,

¢ Select (any one or two or three or ... any numbers) the
appropriate discrete logarithm problem (or problems)
in the free groups by using our Theorem 1, for
example;

First, we select the case-3, then after, we select the
first discrete logarithms from the first series of discrete
logarithms as,

L m 1
Tty

Am

We can again select the second discrete logarithms
from the second series of discrete logarithms as,

o 1

yﬂ :(Xlllmxmlm)(ylél)

o Selectall keys, {X,, X, V1, Vas Aty Ay O, O,
*  Select the public keys, {x,, %, v, Vo, A1, O}
o Select the private keys, {A,, 0,}

The encryption

*  Select the message, [m = m, +m,],
*  The Ciphertext, [c,, c,, ¢, ¢;], where,

o,=(x,)"
) :(Yn)l:-
G;=1m, {(Xmm)k} >

c,=m, {(y,")'},
The decryptin: The Plaintext, [m = m, +m,], where,

m, = (03)-(01)jm
m; = (04)-(02)ﬁn

CONCLUSION

In the year 2005, Petridis and Risager (2005) was
given the concept of discrete logarithms mn free groups,

after a suitable re-normalization and restriction, the
discrete logarithm is distributed according to a standard
Gaussian distributon. Mainly m this study shows that,
for the free group on n generators, they prove that the
discrete logarithm is distributed according to the standard
logarithm s
appropriately. We study also Hungerford (2004), Sharp
(2001), Terras (1999) and Zassenhaus (1938).

We motivated to the above idea to develop the new
fimdamental concept of the discrete logarithms in the free
groups, but using the different way, therefore our concept

Gaussian  when the renormalized

1s exactly different to Petridis and Risager’s concept,
because we not only give the discrete logarithms in free
groups but also give the two distinct and mega series of
discrete logarithms in free groups, by usmg the
fundamental idea of Free Groups, Free Products,
Generators and Relations based our original Theorem 1.
We also design a secure, practical and multi-optional
public key cryptosystem based on the our concept. This
public key cryptosystem providing the security of many
public key cryptosystems in the only single public key
cryptosystem, because the security of our public key
cryptosystem is based on the not only depend on the one
or two discrete logarithm problems but the mega series of
discrete logarithm problems. Tt means the behaviour of our
public key cryptosystem as “evergreen public lkey
cryptosystem”™.
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