M Asian Journal of Information Technology 6 (11): 1105-1109, 2007
We]l

EAL . AT ¥ [SSN: 1682-3915
Online © Medwell Journals, 2007

Implementing an A pplication Gateway for Client/Server Systems

AJ Jegede and G.1.0O. Aimufua
Department of Mathematical Sciences, Nasarawa State University, Keffi, Nigeria

Abstract: This study was carried in the computer science laboratory of the Department of Mathematical
Sciences, Nasarawa state University, Keffi, Nigeria. The research 1s a continuation an earlier work titled *A
specification of an application gateway for client/server systems’ published in Asian Journal of Information
Technology, vol. 6 No. 8. The model of an application gateway proposed in the earlier work is implemented here
as a totally decentralized distributed application consisting of three subsystems: Generate packet system,
AppGateway system and Learming system. The system flowchart 1s used to illustrate how each of the
subsystems works as well as their interactions in the overall system. Java i1s used as the language of
implementation because it is very suitable for network communication and it has extensive routines for dealing
with communication protocols. The existence of these routines provides java with the capability and flexibility
to communicate with TCP/IP protocols such as HTTP, FTP, etc.

Key words: Application gateway, network, packet, packet generation protocols, system flow diagram

INTRODCUCTION

In a study titled ‘X Through the Firewall and other
Application Relays’, Wolman (1998) referred to
application gateway as an application proxy or application
layer firewall. Unlike packet- filtering-based and stateful-
packet-filtering-based firewalls which examine incoming
and outgoing packets at only the network and session
levels, application layer firewalls inspect traffic at the
application level m addition to lower levels. Ranum (2001)
posited that application layer firewalls can be used as
network address translators since traffic goes in one side
and comes out the other, after having passed through an
application that effectively masks the orign of the
nitiating connection.

An application gateway works as follows. When a
packet comes into an application layer firewall, it is
handed off to an application specific proxy, which
mspects the valdity of the packet and the application
level request. For example, if a web request (HTTP) comes
into an application gateway, the data payload containing
the HTTP request will be handed off to an HTTP proxy
process. In the same vem, an FTP request would be
handed to an FTP-proxy process, Telnet to a Telnet-proxy
process and so on Anonymous (2001). This concept of a
protocol-by-protocol approach 1s more secure than
stateful and generic packet filtering because the firewall
understands the application protocols (that is, HTTP,
FTP, etc) themselves. This application gateway developed
in here 13 meant to provide security for local area network

connected in a client/server mode. The gateway stands
between a local area network (connected in a client/server
mode) and external networks and systems. [t ensures that
only authorized network packets are allowed to enter or
leave the internal local area network.

MATERIALS AND METHODS

We used the system flow chart to illustrate how each
of the program modules functions as well their mteraction
in the overall system. The system flow chart uses 5 basic
symbols as shown in Fig. 1.

The local area network and the external network are
designated as entities and are represented using the
symbol shown in Fig. 2.

Source: Which is nsed its represent a data or an object
source

Rectangles with soft edges: used to represent a process
or an operation

Arrows: Used to indicate the direction of data or
information flow.

Data store

L

2.

04 0L

Sink

Fig. 1: System flow diagram symbols

Fig. 2: The entity symbol

Corresponding Author: A.J. Jegede, Department of Mathematical Sciences, Nasarawa State University, Keffi, Nigeria

1105

Asian J. Inform. Technol., 6 (11): 1105-1109, 2007

Console

Fig.3: Flow diagram illustrating the operation of the
packet generation module

Display
report

Fig. 4 System flow diagram illustrating the operation of
the application module

The program modules: The program comprises of four
modules. Each of these modules is presented as a class
with states and methods that perform a particular
function. These modules are:

Packet generation module (implemented as general
packet class): This program module was necessitated by
the need to overcome the constraint of generating the
packets to the parsed (or filtered) by the application
gateway. This class extends with the JTFrame class of the
javax.swing packet. Tt uses JTextfields and JComboboxes
to capture the parameters of the packet to be generated.
The packet (together with its parameters) 1s attached to
the check event of the JButton. This check event is
captioned OK. This module (or class) generates a packet
object and serializes it on the network through the
application gateway module (that 1s, the AppGateway
Class). Tts operation is illustrated by the flow diagram
shown in Fig. 3.

Application gateway module (implemented as the
appgateway class): This module accepts the packets
generated by the packet generation module and parses (or
filters) them based on the mformation obtamed from the
knowledge base.

Format

Security

Report

AppGateway Packet
Privilege

Fig. 5. System flow diagram illustrating the operation of

Consloe

the display report module
SOURCE IP ADDRESS: [127.3333.33 |
DESTINATION TP ADDRESS: [127.11.11.11 |
PROTOCOL [TELNET V|
SECURITY REPORT | araNT v|
| uvepare | cancer |

Fig. 6: Graphical user interface depicting the (grant)
operation of the learning system module

The knowledge base holds the following information
about each packet:

*» Source address

s Destination address
* Protocol

» Access rights

The AppGateway class (or module) performs this
function by using the methods of the Tavanet, java.sql,
java.io and java.odbc packages. The class uses threads to
manage the packet filtering operation. This enables the
class to perform uninterrupted filtering function. The
system flow diagram shown in Fig. 4 illustrates how the
application gateway module works.

Display report module (implemented as display report
class): The purpose of this module is to display the report
generated by the application gateway module (that 1s, the
AppGateway class). This class is designed as a modal
Tdialog class. It 13 invoked by the AppGateway class and
its operation is depicted in Fig. 5.

Learning system module (implemented as the learning
system class): This module 15 purposely for creating and
updating the knowledge base. The knowledge base is
used to provide preset mformation on which the
application gateway module operates. The learning
system module provides an mterface through which
rules are added to or removed from the knowledge base.
That is, it serves as a means of specifying ahead of time
which source is allowed to reach a particular destination
based on which protocol. For example, the leaming
console graphical user interface in Fig. 6 provides a means

110e

Asian J. Inform. Technol., 6 (11): 1105-1109, 2007

SOURCE IP ADDRESS: 127.33.33.33 |
DESTINATION IP ADDRESS: [127.11.10.11 |
PROTOCOL [Dsw V|
SECURITY REPORT [DENY v|

| vepate | canceL |

Fig. 7. Graphical user mterface depicting the (deny)
operation of the learming system module

Console

Knowledge base

Fig. 8 System flow diagram illustrating the operation of
the learning system module

External
network

'.lﬁenerallul |"|General
packet AppG: ¥ packet
:
| system I‘ >

Fig. 9: System flow diagram depicting the overall
operation of the gateway system

Knowledge base

of specitying a rule (in the knowledge base) which allows
packets with source address 127.33.33.33 to reach
destination whose address 15 127.11.11.11 using the
TELNET protocol.

Conversely, we can specify another rule which does
not authorize packets originating from a source whose
address 1s 127.33.33.33 to reach a destination whose
address 15 127.11.11.11 using the DNS protocol. The GUI
shown in Fig. 7 illustrates how this can be done.

The learning system class is designed as a Iframe
class. It uses the java.odbc and java.sgl packages to
update the knowledge base. The leaming system captures
its input via a Graphical User Interface (GUT) powered by
the javax.swing package and updates the knowledge base
via the Jbutton event handler. The flow diagram in Fig. 8
depicts the operation of the learning system module.

All these modules interact to achieve the overall
objectives of the application gateway system. Ths
interaction is illustrated by the system flow diagram in
Fig. 9.

DEVELOPMENT ENVIRONMENT

The development environment for the system consist
of the hardware and the software platforms on which the
system was implemented as well as the programming
language and other tools (utilities) used for implementing
the system.

Hardware requirements: These comprise of the following:

s A VGA/SVGA monitor
» Pentium II MMX processor and above
¢+ A32 MB memory (RAM)
s+ A 101 enhanced keyboard or a compatible
» A hard disk of about 500 MB and above
+ A mouse
Networl Card (for handling network connection)

Software requirements: The software requirements for
the system includes

Java Virtual Machine (JVM): The JVM provides a further
interpretation and execution of the byte code produced by
the java complier. The java virtual machine adds operating
system specific information to the java byte code so that
the program can run on a specific operating system.
When the byte code is run, the TVM interprets and checks
the integrity and security of the byte code. Then it
dynamically applies specifics based on the parameters
found in systems configuration and environment
variables.

Java Development Kit (JDK) version 1.3.1.2: The java
Development Kit (JDK) consists of a number of
executables which are command line driven. The tools
available in the Java Development Kit are as follows:

» Javac L.e. the java complier

*» Appletviewer i.e. java’s applet viewer
» Javai.e. java interpreter

s Javapi.e. java disassembler

» Javahie. C header and stub file creator
¢ Javadoci.e. java document generator

» Jbdie. java debugger

Microsoft access 2000: This 15 used for creating and
managing the knowledge base.
A Microsoft Windows operating system

1107

Asian J. Inform. Technol., 6 (11): 1105-1109, 2007

IMPLEMENTATION LANGUAGE

Java 1s chosen as the language of in domination
because 1t has broader capacity and more power (Harold,
1997) Moreover, java is robust, secure architecture neutral
and portable (Walsh, 1996).

RESULTS AND DISCUSSION

The byte code resulting from the compilation of the
Java code for the system 1s packaged mto a self-extracting
executable that places the entire system m the folder
C:\Gateway. To start the packet generation applicatiorn, it
is ensured that the system is switched to the C:\Gateway
directory. This 15 followed by typmng “Java Generate
Packet” or by double-clicking the Generate Packet system
bat file. This leads to the coming up of the window based
GUI shown in Fig. 10. As contained in the figure, packets
are generated based on the input supplied by the user.
Here we mtended to generate a packet with an IP source
address 127.33.33.33 which originates from a terminal
named yomisorel. The packet which uses the telnet
protocol 1s to be dispatched to another machine named
localhost with an IP address 127.11.11.11.

On clicking the OK button, this subsystem creates an
object of the serializable packet class which is passed to
the application gateway for the filtering (or parsing)
operation. Starting of the application gateway requires the
typing of the “Tava AppGateway™ at the command prompt
in the C\Gateway directory or the double clicking of the
AppGateway system bat file. At startup, this subsystem
listens for incoming packets while displaying the GUI
shown in Fig. 11.

On detecting an m-coming packet, the application
gateway automatically extract the parameter contained in
the packet and compares them with the mformation
available in the knowledge base. A dialog box is displayed
to report the access right allowed between the source
machine and the destination machine based on the
protocol used. The dialog box 1s as shown in Fig. 12.

The learning system is used to create and update the
knowledge base of the application gateway. To update
the knowledge base, the learning system is started by
typing Leamning system at the command prompt in the
CiGateway directory or by double clicking the
LearningSystem bat file. An ODBC driver is created for
the database with the name Gateway via the
administration tools of the operating system. On lunching
this subsystem, the GUI shown in Fig. 13 comes up. This
interface allows the user to grant or revoke privileges
between the machine on the client/server LAN and those
on the external network.

=

SOURCE IP ADDRESS: 127333333 |
SOURCE NAME: | yomisoret |
DESTINATION IP ADDRESS: [127.1111.0 |
DESTINATION NAME: [tocathost |
PROTOCOL | TELNET v|
| ox CANCEL |

Fig. 10: Graphical user mterface illustrating the packet
generation process

Fig. 11: Graphical user interface depicting the listening
process of the AppGateway system

N =

SOURCE IP ADDRESS: [1273333.33 |
SOURCE NAME; | yomisoret |
DESTINATION [P ADDRESS: [127.11.11.11 |
DESTINATION NAME: | tocathost |
PROTOCOL | TELNET |
SECURITY REPORT | GRANTED |
C =

Fig. 12: Graphical user interface depicting the packet
detection and security reporting processes

SOURCE IP ADDRESS: [1273333.33 |
DESTINATION [P ADDRESS: (127111111 |
PROTOCOL |TELNET V|
SECURITY REPORT | oraNT v|

| uepate | cancer |

Fig. 13: Graphical user mterface depicting the use of the
learning system to update the knowledge base

1108

Asian J. Inform. Technol., 6 (11): 1105-1109, 2007

CONCLUSION

This study provides a good background to other
mteresting and challenging areas of studies in network
security. Although, we attempted to implement only a
model of an application gateway to take care of perimeter
(external) security in client/server environments, the work
can be extended to accommodate further study/research
in the following areas:

¢ Extension of the tools to support more protocols.
This made possible by streamliming the
mplementation of the system with the TCP/IP
protocol suite, which in the standard protocol for
network communication. Although, the system
currently supports only four members of the TCP/IP
suite; that is, DNS, FTP, HTTP and Telnet, there
exists the possibility of upgrading the tool to support
more members of the TCP/IP suite such as SNMP-
Simple Name Management Protocol and SMTP-
Simple Mail Transfer Protocol. All that is required is
to develop modules to process the packets using the
new protocols as well as the incorporation of
additional rules m the knowledge base. The
allowance for extension is necessary because
network environments are not static in real life. There
is always the need to support a new service or to
deactivate an existing one based on the objectives of
the environment and/or secwrity requirements or
considerations.

¢« The need to continue the benefits of traditional
packet filtering with these of an application gateway.
This requires the development and verification of a
system to implement the combined approach. The
question of combining the strengths of the traditional
packet filtering approach with those of the
application gateway is currently at the forefront of
research in firewall security.

s Exploration of the possibility of merging the tool with
other network security strategy(ies) to obtamn an
enhanced security suite. This arises from the fact that
application gateway 1s a reactive model (that 1s, it
waits for a security breach before it responds) while
other approaches such as mtrusion detection system
and scanners are reactive models. That 1s, they do
not wait for a security breach before responding.
Instead, they periodically examine the network for
security holes and then react accordingly. Merging
the two approaches (reactive and proactive)
definitely provides a better means of managing
security. However, there exists the need to define,
design, develop and verify a system to implement the
combined approach to see if and how it will work in
a practical situation.

REFERENCES

Anonymous, 2001, Maximum Security. 3rd Edn. Sams,
Indianapolis. United States, pp: 194-195.

Harold, ER., 1997. Java Secrets, IDG Books Worldwide
Inc., United States, pp: 196.

Tegede, AJ., G.L.O. Aimufua and H.O. Salami, 2007.
A Specification of an Application Gateway for
Client/Server Systems. Asian J. Inform.
Technol., 6: 847-853.

Ranum, M.T.,, 2001. Internet Firewalls: Frequently Asked
Question, http://www.intehack . net/pubs/fwfaq.

Walsh, A E., 1996. Fundamentals of Java Programming for
the World Wide Web, IDG Books Worldwide Inc.,
United States, pp: 170-191.

Wolman, T., 1998. X Through the Firewall the other
Application Relays, Digital Equipment Corp.,

Cambridge Research Lab., fip://crlssdoc.com . /pub/

DEC/CRL#ech.

1109

