M Asian Journal of Information Technology 6 (11): 1110-1116, 2007
We]l

EAL . AT ¥ [SSN: 1682-3915
Online © Medwell Journals, 2007

VSMRK: A Parallel Implementation and the Performance of Variable
Stepsize Multistep Runge-Kutta Methods for Stiff ODEs

'H. Suhartanto and *K. Burrage
"Faculty of Computer Science, University of Indonesia, Depok 16424, Indonesia
*Department of Mathematics, The University of Queensland, Brisbane 4072, Australia

Abstract: Many natural phenomena and applications in industry can be modeled as systems of Stiff Tnitial Value
Problems (IVPs) of Ordinary Differential Equations (ODEs). Usually the problems to be solved are huge in

dimension, hence require huge computing resources and time. This study describes the parallel inplementation
of Variable stepsize Multistep Runge-Kutta (MRK) method of Radau Type for solving stiff TVPs of ODEs and
its performance on SGT Origin 2000. The numerical results show the superiority of the code compared to various

standard code on dense and large sparse problems.

Key words: Multistep runge-lcutta, stiff ordinary differential equations, parallel implementation

INTRODUCTION

Several numerical experiments using Multistep
Runge-Kutta (MRK) methods have been performed to
solve stiff Initial Value Problems (IVPs) for systems of
Ordinary Differential Equations (ODEs)

y(x) = fiy(x), f:R" ®R"™, y(x,)=y, (1

for example (Burrage and Suhartanto 1997, Schneider,
1993). This equation
phenomena such as

represents some physical
depletion,
designing aircraft, researching the human anatomy, real-
time forecasting based on sophisticated climate models,
simulating reactions, superconductivity and molecules,

simulating semiconductors materials, simulating the

evaluating ozone

behavior of nuclear power plants and weapons in
operating conditions exceeding the safety lumit of practical
experiments and study of turbulence and seismic data.

However, these methods used constant stepsize
MRXK formula. In this study, the underlying methoed is the
r-step, s-stage Variable stepsize Multistep Runge-Kutta
(VMRK) method of Radau type described in Burrage and
Suhartanto (1997), Burrage and Suhartanto (2000) and
Suhartanto (1998). In this study, the methods used will be
briefly reviewed. This includes the underlying methods,
iteration techniques and the parallel technique. These will
be followed by section detailing the numerical experiments
and the discussion of the results.

MATERIALS AND METHODS

The core methods: The underlying method 15 the r-step,
s-stage Multistep Runge-Kutta (MRK) method of Radau
type characterized by

Y,

n

You =

(e] @10,

Here, Y, € R™ represents s stages vectors
(Y., Y7, 0" and are approximations to the solutions at
the off step points x, + ¢h, i = 1,...,s and F(Y,) ¢ R™
represents s-derivatives of stage vectors (f(Y,).,
fY,)0, ™ € R™ represents r previous solutions (y,,...,
v o) and T, denotes the identity matrix of order m, h, is
the integration step, A is an s-by-r matrix and B is an s-by-
s matrix and & 18 Kronecker product. All parameters of the
variable stepsize methods, (c, A, B) depend on the ratio of
the stepsize given by

pn,r—1 =

Where, h =x,, -x,1=n-r+1,..n
By defiming

¢ =[e}...cll q'=e, ¢" =[qf...qi]" (p=1)

Where:

Corresponding Author: H. Suhartanto, Faculty of Computer Science, University of Indonesia, Depok 16424, Indonesia
1110

Asian J. Inform. Technol,, 6 (11): 1110-1116, 2007

e=[L...1]" €R", q, =0, q, =—=

and considering also the assumptions

Biw): py'¢ ' +a’g® =1 p=1..,w

Cm): pB +Ag =¢® p=0,..7

We proved mn Burrage and Suhartanto (2000) and
Suhartanto (1998) that The maximuum attainable order of a
stiffly accurate VMRK method is 2s+r-2. Methoeds with
these order exist satisfying C(s +r1 - 1) and with ¢,..., ¢,
real, distinet and lymng in the mterval [g, 1].

The iteration technigue: To solve Y, in (2), we proposed
an iteration technique m Burrage and Suhartanto (1997)
and Suhartanto (1998) that 1s by iterating Y, for example
L times

Y9 = (A®LYy" +h ([B- WIR L F(YI™),
+ h (W @I F(YD), j=1..,L (3)
yn+l = (e;r ® Im)YI'EL)

Where Y, denotes an initial approximation cr predictor to
the vector Y, and W 1s the splitting matrix.

Several types of predictors for Y®, are considered,
these are P, which is a trivial predictor where we define
Y® =Y, ,,P,, whichis an extrapolation predictor using r
previous solutions, P, which 1s an extrapolation predictor
using r previous solutions and s previous stages vectors,
P, which is an extrapolation predictor using s previous
stages vectors of the last step and P, which 13 an
extrapolation predictor using s previous stages vectors of
the last step and v, ;. We also proved in Suhartanto (1998)
that given a predictor Y™, of order p, it attains order p+1
after | iterations.

The parallelism: In Suhartanto (1998), it was also noted
that the matrix W in (3) should be in a form such that the
iteration could be done in parallel for each YG)M, i=1,..5.
The obvicus choice of this matrix 13 W = D, where D 1s
some diagonal matrix, hence the s components of each
vector Y¥, can be computed in parallel provided that there
are s processors available. In the case of the fixed-step-
size methods, W 1s easily defined as it is fixed, available
and used on every step. However, thus 1s not the case for
a VMREK method, as the computation of W requires a
certain condition to be satisfied which is difficult to
umnplement. For example, consider choosing W = D, then
it is required that the spectral radius of the matrix (I - D" B)

vanish in order to have good convergence for stiff
problems. However, in general these schemes are very
delicate and very difficult to adapt to our methods as it
requires symbolic computation of D. However, for
methods with small number of stages, say three, we will
construct the splitting matrices W. In this implementation
we define them to be the triangular matrices obtained from
the application of Crout methods on B. This requires the
use of Butcher similarity transformation matrices but these
can easily be determined.

Now since the computation of each Y®_ T=1,.., s is
independent because of the choice of the spliting matrix
W then the process of evaluating the derivative,
factorization of the iteration matrices and solving the
systems of the stages are done
concurrently.

linear of each

RESULTS

The computing environment: Some tests were done on a
SGT Power Challenge and a SGI Origin2000 system
comprising 64 R10000 MHz CPUs each with 4 MB cache,
a shared-memory multiprocessor machine, 1.e., it consists
of a collection of homogeneous processors (equivalent
capabilities) which can execute distinct instruction
streams in parallel. The machine, sited at the University of
Queensland, runs IRTX release 6.2 IP21 and the code 1s
written in Fortran 90 compiled with MIPSpro Fortran 90.

Problems tested: The first two test problems BRTIS-0 and
BRUS-1 are based on the reaction-diffusion Brusselator
problems

‘u u

éu

— :B+uzv—(A+1)u+oc(—121+—2)

ot ot oy
2 2

i =Au-u'v+ o:(—Jrﬁ)

at aXZ aYZ

BRUS-0 uses intial conditions
u(0,x,y) = 22y(1- y)'*, v(0,x,y)=27x(1-x)"",
te[0,1.5]A=3.4, B=1,0.= %nz
Whereas BRUIS-1 uses intial conditions
w0, x,y)=2+025xy, v(0,x,y)=0.8x, t<[0,1]

A=34B=1La=0002

Both BRUS-0 and BRUS-1 uses Neuman boundary
conditions.

1111

Asian J. Inform. Technol,, 6 (11): 1110-1116, 2007

Table 1: Timing and accuracy obtained using predictors PO, P1, P2, P3 and P4 (on the SGI Origin, 2000)

N=10 N=15 N=20 N=24 N=30 N=36
BRUS-0

B-ord

4 2.21/4.3 5.79/6.9 1.411/6.6 28.46/6.6 51.79/6.5 80.12/5.8

3 1.976.4 5.44/6.4 12.30/4.6 24.77/6.0 43.80/6.3 75.37/5.8

2 2.53/7.1 7.00/7.5 15.95/7.0 32.92/7.1 56.08/6.5 91.34/6.5

1 2.21/7.0 6.20/11.0 14.54/11.0 28.12/11.0 50.51/11 80.46/x
A-ord

4 6.76/1.7 92.97/2.0 131.7/1.7 422.54/2.4 +/+ +/+

3 6.14/2.1 30.89/1.3 123.4/2.6 378.09/2.0 +/+ +/+

2 7.36/1.8 39.85/1.6 154.2/1.9 4188.78/2.8 +/+ +/+

1 6.37/1.9 95.11/1.6 198.0/1.3 417.95/1.9 +/+ +/+

0 6.86/2.9 35.43/11.0 143.5/11.0 425.41/11.0 +/+ +/+

BRUS-1

B-ord

4 1.04/7.4 1.82/4.7 4.33/7.4 8.61/4.2 14.46/7.1 26.6/7.5

3 0.60/6.4 1.45/3.7 3.60/6.4 8.26/7.1 13.61/7.2 22.37/3.8

2 0.86/7.2 2.22/7.1 4.41/7.2 9.30/7.2 15.98/9.9 28.67/7.3

1 0.66/6.3 1.66/6.5 3.69/6.8 9.10/7.6 15.9/7.8 25.01/7.8

0 0.75/7.5 1.76/11.0 3.98/11.02 8.98/11.0 14.11/11.0 22.7711.0
A-ord

4 2.52/7.4 14.52/4.7 43.28/7.4 127.29/4.2 347.52/7.1 +/i+

3 2.14/6.4 9.90/3.7 38.57/6.4 117.15/7.1 330.55/7.2 +/+

2 2.24/7.2 12.64/7.1 44.46/7.2 132.11/7.2 346.06/9.9 +/i+

1 1.92/6.3 10.29/6.5 37.19/6.8 133.81/7.6 341.24/7.8 +/i+

0 3.03/7.5 11.4511.0 42.21/11.0 132.76/11.0 336.15/11.0 +/+
Table 2: Timing and accuracy at N = 30 and various tolerances (on the SGI Origin, 2000) with A/B ordering, m = 2N?
TP -log(tol) =6 7 8 9 10
BRUS-0
4 38.84/4.4 42.07/5.5 52.55/6.3 57.25/6.9 82.54/7.9
3 38.86/4.5 37.39/5.3 45.45/6.6 56.66/6.9 73.33/4.7
2 37.45/4.7 46.10/6.5 54.58/6.5 T0.56/7.7 105.07/8.4
1 39.74/5.0 42.23/5.5 50.29/6.3 64.88/7.2 80.89/8.4
0 31.65/4.7 35.95/44 49.81/6.7 70.90/4.8 96.91/88
BRUS-1
4 12.49/5.3 12.59/4.1 15.11/7.0 15.96/7.5 20.54/8.3
3 12.22/3.8 12.39/6.0 14.86/7.0 17.31/77 18.60/85
2 13.01/5.8 15.47/6.9 16.00/3.9 19.31/8.2 23.16/88
1 13.02/5.3 13.67/6.5 15.36/7.8 17.31/8.1 22.69/89
0 16.66/5.4 14.14/6.4 15.12/7.4 17.72/8.4 20.04/91

fu 0 v 0 For the ordermg (A), the Jacobian of the problem has
on on the structure

When the Brusselator problems discretized by N = N
arrays points. It yields the following m = 2N? equations.

i _ 2
u' —]E’>+uwvl’J

—(A+Du, +a(N+1y
- 4ui:])

(uM:] LIRS o PP

1,9+1
| 2z 2
vii=Au —u v ralN+1)
(V1+1,J TV T Y Y 4V1,J)
Tt is obvious that there at least two natural ways of
ordering the u and v components of the system raised

from the problem (Burrage, 1995). These orderings,
respectively (A) and (B) are

Wy Wy Waggseees Wy s Vi poees ¥aggaee s Vg

and Uy, Vit Vige o Ui Vi,

Tl Dl

DZ TZ
Here each T, is a block-tridiagonal matrix consisting of
N blocks of blocksize N. The diagonal blocks of the T, are
tridiagonal matrices, while the off-diagonal blocks are
diagonal. D, and D, are also diagenal matrices. It was not
mentioned in Burrage (1995) that the boundary
conditions applied will effect the structure of the

Tacobian. For instance, if the following boundary
conditions

uD,J = u2,_|3 uN+1,_| = uN*l,_]’ u1,D = u1,23 u1,N+1 = ul,N*1(4)

v :Vz,p

0.] V1,U = V1,2='

Vi, = Yu-uie Vi = Vin-1

is used then the ordering (B) leads to a block-tridiagonal
Jacobian, consisting of N blocks of dimension 2N. The

1112

Asian J. Inform. Technol,, 6 (11): 1110-1116, 2007

diagonal blocks are themselves pentadiagonal matrices
and the off-diagonal blocks are diagonal matrices.
However, when the following boundary conditions
(applied in the Brusselator problem with 2-D diffusion
(Hairer, 1997).

Wy W Wi =W s Wy gy = W,

Vieri = Voo Yio ™ Viwerr Viwe = Vi

(3)

are used then the ordering (B) leads to a block-tridiagonal
Jacobian but with the half-bandwith 2(N“N) and the
ordering (A) gives the same structure of the Jacobian. For
this reason, we only run the experiments with boundary
condition (4).

The next problem tested is the Dense problem defined
in Burrage (1995), Burrage ef al. (1997) and Suhartanto
(1998) as the following;

Syg2
vy, ={QY)+e ™ ,i=1..,
mYeR", Y0 =¢ x<[01]

Where Q = QT, DQ,, Q, has orthenormal columns of
a random dense matrix M and

100 if (mod(i,10)) =0
D(i,i)—{ (mod(1,10) ,i=1..,m

mod(i,10) otherwise

DISCUSSION

To see the performance of the code with several
types of predictors,we solve the BRUS-0 problem and
BRUS-1 preblem with two orderings at tolerance 107
Numerical Jacobian approximation is used in all tests on
Brusselator problems. Method VS33 with three processors
15 used. In order to see the accuracy obtained, the
estimated 'exact' solution 1s computed by the R14 method
with four processors at tolerance 10" The results are
recorded i Table 1, where the number 0,1,2.3.4 in the first
column represents the predictors used, Py, P,,..., P,; A-ord
and B-ord labels 1s A-ordering and B-ordering,
respectively and the x/y table entries indicate time spent
in x seconds and the y digits of accuracy.

It 18 obvious that more time 1s required to solve the
problem with A-ordering and in some tests it produces
less accurate solutions. One can also recognize that the
predictor P3 outperforms the other predictors. Unexpected
results were shown by predictor PO whose performances
are better than those of P1, P2 and P4. This 1s due the fact
that P1, P2 and P4 involve previous step points which are

relatively too far from the next stage points. Since we are
using one inner iteration, more inner iterations might give
similar behavior for the predictor.

We also solved the problem with B-ordering on
several tolerances and the results are recorded in Table 2.
We can clearly see that predictor P3 is superior to the
others. Due to excessive function evaluations, some tests
were not conducted. These are shown by the star (*)
symbol entries in the tables.

In order to see the speed-up and efficiency of the
code, we performed some tests on both the dense problem
and Brusselator problems. The results, recorded in
histogram charts, are displayed in Fig. 1 and 2. Here p,, pi,
P2s Ps Pa denotes the type of predictors used, the two-
digits number 13 and 14 denote IRK methods of Radau
type, vs, are the two-digits numbers representing
variable stepsize MRK methods, the accuracy digits D is
the minimum digits accuracy achieved at the end point of
integration.

Each figure consists of two sub-figures (A) and (B),
each of which consists of three charts and each charts
represents speed-up, efficiency and digits accuracy,
respectively. Figure (1 A) shows the results on the dense
problem with m (problem size) equal to 500. while Fig. (1B)
with m equal-750. Tt is obvious that the speed-up achieved
by the 2 processor method ranges from 1.6-2.4 of the three
processor methods, while TRK Radau three (R13) and four
(R14) stage methods achieved speed-ups 2.3 and 3.2,
respectively. The efficiency obtamned by the methods
ranges from 79-85%, whilst IRK Radau method achieved
60-80% efficiency. The accuracy obtained by the methods
of both MRK and IRK type ranges from 4.7-8.9 digits,
however each of predictors performed differently.

Methods with two-processor (two stages) achieved
a speed-up of about 1.5, efficiency ranges from 75-81%,
digits accuracy 5-6.8 digits and a poor accuracy was
provided by method V42 with predictor P3. Methods with
three processor implementation (three stages) obtained a
speed-up about 2.2, efficiency ranges from 70-75%, digits
accuracy ranges from 6.1-8.2. The TRK Radau achieved a
speed-up of about 2.5 and 3.5 for three and four stage,
respectively and efficiency from 76 to 82 and 65-75%,
respectively and accuracy various from 5.5- 8.8 digits
accuracy.

Figure (2A) and (2B) describe the results on BRUS-0
problem with N = 20 and N = 30, respectively (recall the
dimension is 2N°). Tt is obvious that all three-stage
methods obtain a speed-up of 1.7-2.1, efficiency between
60-70% and D about & decimal digits. The two-stage
method attaing a speed-up of about 1.5, efficiency
between 60-70% and accuracy between 4-7 decimal digits
and the TRK-Radau method of four-stages attains a speed-

1113

Asian J. Inform. Technol,, 6 (11): 1110-1116, 2007

Speed up and donee problem, m = 600
opl mp2

3.00 ohl mn

2.504
2.00
1.50

1.007
0.501
0,004

up4

13 14 va22 va23 vs32 vsi3
1.007
0.801
0.601
0.40+
0,204

0.004

vi22 | ve23
Accurcoy :izgit (D}
op) m

opl mp3 ¥ ™

13 14

vs32

vs3i3

13 14 vs22 ws23 ws32 wvs33

Speed up and donce problem, m = 600
opd .p2.p4

II opl @mp3
13 14 vs22 vi23 vs32 wsi3
Emolonoy ~ OP0 mp2

|:||1 mp3 l_p4 _

13 14 vs22 vs2 val2 vs33
Accurcoy digit (D)

=]
abt [yags P

3.
3
2,
2.
1.
1.
0.
0.

SOt thoLh
[=1=Y=J—]=]] =] =]

13 14 vs22 vs23 vs32

vs33

Fig. 1: The results on the dense problems (on the SGT power challenge)

R13

ll

ve3d3 va23 wved2 vs32 w522 RI4 R13
: it 3P4 EP
1:_ Aocumcyd.lglt(D)np3 mpl lp()_
6-

vs32 wvs22 Rl4

v533

vs23 vsd2

R13

op4
2.0 op3

1.5

25 Speed up

mp3
mpl mpd

1.0
0.5
0.0
vs33 we23 wvsd2 ws32 vs22 R4 R13
mp3
mpl mpl

vs33 vs23 vsd2 wvs32 ws22 Rl4 R13

| Accuracy digit (D) o p4
op3

vs33 vs23 vsd2 vs32 vs22 Rl4 R13

Fig. 2: The results on BRUS-0 problem, N = 20 and N = 30 (on the SGI power challenge)

up between 1.6-2, efficiency about 50% and accuracy
between 6-9 decimal digits. We see that, in comparison
with the previous Figure 1, there is a decrease m the
speed-up obtained on the BRUS-0 problem. This is one of
the effects of using numerical differencing to approximate
the JTacobian. When function evaluations are costly, it will
contribute significant overheads to the whole process.
This addresses the need for possible parallelism in the
Jacobian approximation, which will be mvestigated further
in later research.

To compare the performance of the code to those of
VODE and the parallel iterated TRK-Radau type, we tested
the code on both Brusselator BRUS-0 and BRUS-1 with
various sizes of the systems. B-ordering is used and the
computation is done at tolerance 10°. Since a numerical
Tacobian is imposed in our codes, we set a flag MF = 25
prior to calling VODE. This flag forces VODE to generate
numerical banded Jacobian approximations. The timing
required by sequential VODE, parallel V333 method with
three processors and TRK-Radau R14 with four processors

1114

Asian J. Inform. Technol,, 6 (11): 1110-1116, 2007

Table 3: Timing required by V833, R14 and Vode on Brusselator BRUS-0 and BRUS-1 {on the SGT ORIGIN, 2000)

NP N=10 N=15 N=20 N=25 N=30 N =35 N =40
BRUS-0
V833 3 2.05 544 1241 24.81 44.68 70.84 109.85
VODE 4 2.06 597 14.15 25.83 47.98 74.27 114.13
1 1.27 4.25 1047 21.81 42.24 74.09 120.51
BRUS-1
V833 3 14.07 2293 3849 61.14 110.01 182.93 292,76
R14 13.17 22.34 35.68 61.52 108.21 176.14 300.28
VODE 1 13.37 24.53 40.40 92.13 199.39 300.56 496.04
Table 4: Staristics of V833 and VODE at BRUS21, N=10and N = 50
N MF NSTEP NREJ FEVALS JEVALS LU
10 V833 15 0 119 7 15
VODE 93 2 196 2 15
50 V833 16 0 127 9 16
VODE o4 2 517 2 15

10.007 O p0
apl
2000 mp2

Jmp3
6.00 mpd
4.00+

2.004

0.00+

10.007 g po
g.004 Opl
mp2
600 m gi
|]
4.00-

2.004

Timing on dense problem m =500

R13S RI13P R14S RI4P V2285 V22P V238 V22P V325 V32P V3358 V33P V428 V42P
Timing on dense problem m = 750

R138 RI3P R14S RI14P V225 V22P V238 V22P V328 V32P V335 V33P V428 V42P

Fig. 3: The timing of Vode relative to the timing of VSMREK on the SGT power challenge

are given in Table 3. Here NP denoctes the number of
processors used. It 1s obvious that as the size increases
the VS33 method is becoming superior to R14 and VODE.

Note that the results i Table 3 are influenced by
strategies in terms of computing the Jacobian matrices
and factorizing the Newton iteration matrix. In the
code, the old Jacobian will be reused when the error
(differences) of the stages vectors 1s less then 0.001 and
the old LU factors will be used when reuse of the Jacobian
occurs and the ratio of stepsize changes lies between 1.0
and 1.2. VODE, however, computes the new Jacobian at 50
steps after the last evaluation, or when the Newton
iteration failed with outdated Jacobian and the relative
changes of the new and old coefficient (r¢ = h/l)) of the
method less than 0.2, or Newton iteration failed with
current Jacobian or with a singular matrix.

In addition, the factorization 1s done at every 20 steps
after the last factorization or when rc is greater than 0.3.
As we will see, if the cost of the function evaluations is
expensive, even though codes have similar number of

JTacobian evaluations and factorizations, the timing
required might be different. For thus we display the
statistics required to solve the BRUS-1 with N = 10 and
N = 50 with the method V333 and VODE 1n Table 4 with
the same tolerances.

Note that at N = 10, the method V333 has more
Tacobian evaluations than VODE and an equal number of
factorizations to those of VODE. As the problem becomes
larger then the function evaluations are more costly and
this contributes to the time spent. At N = 50, due to the
large number of function evaluations required by VODE,
VODE requires more time than V333. This phenomena 1s
more obvious when the dense problem 1s solved and
these results are given in the Fig. 3.

Figure 3 shows the timing comparison of our methods
to VODE. It plots the relative values of the time spent by
VODE to the time spent by our methods. Values greater
than one indicate that our methods are more efficient than
VODE. Here, R1x8 and R1xP indicate methods of
IRK Radau type, which run with one and x processors,

1115

Asian J. Inform. Technol,, 6 (11): 1110-1116, 2007

respectively, VxyS and VxyP indicate VMRK methods
which run with one and y processors, respectively. It 1s
obvious that on the dense problem all parallel execution

and some sequential process of the code are more
efficient than VODE.

CONCLUSION

Parallel codes for solving stiff IVPs for ODEs have
been developed. The code provides options to the user to
choose the desired methods either-VMREK or IRK Radau
type. Tests on sparse and dense problems have been
conducted The code shows significants efficiencies,
these are shown by both VMRK and IRK methods of
Radau type. Consistent digits accuracy were obtained by
the method V42 and V33. In term of time consumed by the
methods, they show superiority on dense problems over
standard VODE code, even in some sequential processes.
For sparse Brusselator-like problems, they started to
outperform VODE and IRK-Radau at very large problem
sizes.

Our investigation on the time spent on all the tested
problems shows that the LU factorization of the linear
system matrices dominates the whole process, consuming
about 50% of the time, while the bacloward substitutions
required to solve the system consume about 30% of the
time and the function evaluations only spent less than
10% of time. These indicate that the global parallelism on
function evaluations introduced in Suhartanto and
Burrage (2003) will not significantly speed-up the process
unless the same technique be applied to the LU
factorization and backward substitutions. The latter
however 15 not possible to use due to the fact that the
current parallelism feature of the Fortran 90 compiler does
not support this. However, recoding the parallel numerical
algebra routines as for the function evaluations might
solve the problem.

Tn addition to the above mentioned global parallelism
technique, some possible future development of the
codes include techniques to minimize the use of memory
consumption and the time required in solving the linear
algebra parts.

REFERENCES

Burrage, K., 1995, Parallel and Sequential Methods for
Ordinary Differential Equations. Oxford University
Press, New York.

Burrage, K., C.C. Eldershaw and R.B. Sidje, 1997. A
Parallel matrix free implementation of a Runge Kutta
code. In Numerical Mathematics, IMACS Series in
Computational and Applied Math , IT: 45-50.

Burrage, K. and H. Suhartanto, 1997. Parallel iterated
method based on Multistep Runge-Kutta of Radau
type for Non Stiff Problems. Adv. Comput. Math.,
7:59-77.

Burrage, K. and H. Suhartanto, 2000. Parallel iterated
method based on Variable stepsize Multistep Runge-
Kutta. Adv. Comput. Math., 13: 257-270.

Hairer, E., 1997. Testset in Geneva, http:/www.unige.ch/
math/folks/hairer/testset/.

Schneider, S., 1993. Numerical experiments with a
Multistep Runge Kutta method. BIT 33: 332-350.
Suhartanto, H., 1998. Parallel Iterated Techmques based
on Multistep Runge-Kutta Methods of Radau Type,
PhD. Thesis, Department of Mathematics, The
Univesity of Queensland, 5t. Lucia, QLD, Australia,

Suhartanto, H. and Burrage, 2003, K. NSMRK: A Parallel
Implementation of Multistep Runge Kutta methods
for non Stiff ODEs. Jumal Ilmu Komputer dan
Teknologi Informasi., 3: 20-30.

111e

