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Prediction of SO, Ground Level Concentrations by Means of RBF Neural Networks
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Abstract: In this study, a nonlinear model for forecasting the SO, ground level concentrations is build by using
a Radial Basis Function Network (RBFN) based on hybrid learning algorithm. Ground level concentrations of
pollutants were analysed in the area under study, m particular the high levels of SO, occuring during relatively
rare episodes. These events are influenced by many factors, such as local meteorology aspects, topography
and industrial emissions. The model structure is identified by using a fuzzy C-means clustering algorithm. The
proposed RBFN is trained by hybrid learning algorithm to obtain the centre and width of each radial basis
function and the least squares method to obtam the output weights. An improved learming scheme 1s used to
avold the local mimma. The developed model concerns an urban area in the Annaba City (North-East Algeria),

but it can be adapted to other locations.
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INTRODUCTION

Air pollution is one of the most serious problems
confronting our modern word. Air pollution depends on
the quantity and quality of fuels used, on technology
used by industrial and transportation units, on the high
concentration of population and factories and on the
prevalent meteorological conditions. The main source of
SO, emissions 1s the combustion of fossil fuels and 1t 15
among the most prevalent air pollutants n many
mndustrialized areas. In particular, the combustion of fuels
for power generation 1s believed to be responsible for
most of the 30, to which the population 18 exposed.
Exposure of humans to high levels of SO, has been related
to increase in hospital admission for chronic bronchitis
and to low birth weights. The World Health Organmization
has determined that the safety limit for SO, concentrations
is ugm™ for 24 haverages (ECH, 1979).

In recent environmental studies, it has been reported
that the level of sulphur emissions, mamly as 3O,, have
over the last two decades been reduced in westermn and
northern Furope (Holland ef al., 1999 ). However, localised
S0, pollution still exist related to local emission,
meteorological and topographical factors. By contrast,
sulphur emissions are increasing In many emerging
industrialised and developing countries around the world.

Hence, environmental problems associated with sulphur
emissions are still far from being fully solved. Tt seems
then very useful to have at hand reliable methods to
forecast sulphur dioxide concentrations several hours in
advance, mn order to control the phenomenon, to diagnose
the sensors of air quality networl, or even more simply to
improve the knowledge about the pollution phenomenon.

Existing models for SO, forecasting are determimstic
and empirical type. A difficulty encountered with
deterministic models 1s that emissions from natural and
anthropogenic sources, such as industry and traffic, are
often uncertamn and sometimes unavailable. By contrast,
empirical models which include statistical techniques and
neural networks have some advantages over the
deterministic ones. Firstly, they do not need data about
emissions since they are based on the use of air quality
and measurements only. Secondly, the structure of
empirical models is often simpler than deterministic
models and they can more easily be implemented and
used by non-experts, although an obvious drawback 1s
that they are not portable from site to site since they are
developed and calibrated on local data (Dorling et al.,
2003; Gardner and Dorling, 1998, 2000) .

Concerning empirical approaches, linear, nonlinear,
neural and fuzzy models are proposed to predict pollution
levels. The results obtained by linear models were with no
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doubt encouraging, but due to the complexity of the
underlying environmental processes and the nonlinear
mteractions between meteorological variables and
pollution, the development of nonlinear models, such as
artificial neural networks, is curently being applied.
The nonlinear models have been considered for air
pollution time series modelling by several authors such as
(Dorling et al., 2003, Gardner and Dorling, 2000, 1998). The
use of neural networks has been reported by Boznar et al.
(1993), Dorling et al. (2003), Nunnari et al. (1998) among
others. Comparisons between neural networks and linear
models were also done in Chaloulakou et af. (2003) and
the results demonstrated the improvements of neural
networks over linear models. Fuzzy techniques were used
by Mintz et al. (2005) with good performances.

In this study, we report a study on the possibility to
forecast hourly averages of SO, concentrations based on
data obtained in a station located at fixed point in the city
of Amaba (North-East of Algeria) where the expected
emissions in its neighbourhcod come from mdustries,
heating and vehicle traffic. The selected station is one
among the several stations that form the air quality
monitoring network.

MATERIALS AND METHODS

Data description: In the city of Amaba (North-East of
Algeria), the pollution control 1s of great importance, as it
affects the life quality of about one million inhabitants as
well as the ecosystem. The high rate of emissions and
consequently, of contaminants 1s particularly notorious in
the area of Annaba City. The mhabitants are thus
critically exposed to those contaminants as it is the case
of carbon monoxide, nitrogen oxides, ozone, sulphur
dioxide (S0O,) and particulate matter. With about one
million inhabitants and relatively high population density,
Annaba is limited on the North by the Mediterranean Sea,
with about 80 km of coastline and intersected by the
Seybouse river. The average temperatures in warmer and
cold periods are 22,8 and 12,1°C, respectively. The annual
air humidity is 75% and the total annual mean
precipitation varies between 675 and 700 mm. Prevailing
winds are from North-West in summer and North-South in
winter. The main pollution sources are one petrochemaical
plant, one steel plant, one thermoelectric power plant
worlking with natural gas.

The monitoring provided  hourly
concentrations of pollutants such mitrogen monoxide
(NO), nitrogen dioxide (NO,), carbon monoxide (CO) and
particulate matter with an equivalent aerodynamic
diameter smaller than 10 mm (PM,,), sulphur dioxide (SO,)
as well as meteorological variables such as Temperature

facilities

(T), Wind Velocity (WV) and Relative Humidity (RH).
Since the SO, dynamics 1s strictly related to the dynamics
of other pollutants with which it is likely to combine and
recombine, only one station has been considered because
it provides the richest number of meteorological and
pollutant information, together with, of cowrse, the
measures of SO,  We consider data corresponding to
hourly averages for the period that goes from 30/08/2004
to 20/09/2004.

Models: Let us indicate by y (t) a pollutant time series and
by w (t), (i = 1,..., q) to the time series correlated to y (t)
(e.g., meteorological variables as well as other pollutant
concentrations). A d-step ahead prediction model for y (t)
can be represented in Nonlinear AutoRegressive with
eXogeneous inputs (NARX) form as follows:

yO=F&xt)+e)
(M

F being an unknown nonlinear function, n, n, integer
numbers related to the model order, x () is a regression
vector expressed as follows:

x(t) = [y (t-d),... y (t-d-n),
uy (t-d),.., u, (t-d-ny),
u, (t-d), ., u, (t-d-n)] € R® 2

The variables u (t) m expression (2) are usually
referred to as the exogeneous model inputs while v (t) is
the model output. When F 13 linear mn its arguments, the
NARX model becomes the well-known ARX model. Tn this
study, the hourly SO, concentrations are predicted using
a neural network NARX model and a linear ARX model.
The predictors are Particulate Solids concentrations (PS)
and meteorological parameters (Wind Velocity (WV),
Temperature (T), Relative Humidity (RH)).

Moultiple linear regression: Multiple Regression
Analysis (MRA) has been widely used to model the
cause-effect relationship between mputs and outputs and
can generally expressed as:

y=1(x,..x:0...0)+e (3)

Where, v is a dependent variable (i.e, output variable),
Xp,e.., X, @ ndependent or explanatory variables (1.e., input
variables), 0., €, are regression parameters, € is a
random error, which 1s assumed to be normally distributed
with zero mean and constant variance o° and f is a known
function, which may be linear or nonlinear. If f 1s linear,
then (3) becomes a Multiple Linear Regression (MLR) and
can be expressed as:
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y=b+bx+bx 4

The learning problem 1s a straightforward application
of linear regression technmiques to find parameters
6 =[by b, ...b,]" which best fit the data.

RBF neural network: A RBF consists of an input layer,
a nonlnear ldden layer and a linear output layer. The
nodes of each layer are fully connected to the previous
layer nodes. The input variables are each assigned to
nodes mn the mput layer and comnected directly to the
hidden layer without weights. The hidden layer nodes are
REF units. The nodes calculate the Euclidean distances
between the centres and the network input vector and
pass the results through a nonlinear function. The output
layer nodes are weighted linear combination of the RBF in
hidden layer (Haykin, 1989; Moody and Darleen, 198%).
The structure of a RBF neural network with n inputs, C
hidden nodes and m output nodes 15 given m Fig. 1.

Where, input X = [X,, X,..., X,|' and w [w,, w,,..., w,]" is
the neural network weight. v, is a nonlinear function and
here is chosen as a Gaussian activation function:

T
u, = exp{-(x-vgng_vi)} i=1,2,...¢c (5)

Where v, = [vy, V..., v;,]" 18 the centre of the ith RBF
hidden unit and b, is the width of the ith RBF hidden unit.
Then the jth RBF network output can be represented as a
linearly weighted sum of ¢ basis functions:

yik)= ZE:Wlul (6)

Lety (k) represent the target vector of the network at time
k. The error of the network at time k 15 defined as:

e(k) = yk)-y (k) 7

Fig. 1: The structure of RBF neural networks

The cost function of the network is the squared error
between the target and the predicted values, which is
given by the following equation:

1{k) = —e(k)’ (®)

1
2

The learning algorithm aims to minimize the squared error
using a gradient descent or a hybrid learming algorithm.
The later category 1s based on the idea of sequentially
using nonlinear and linear optimisation techniques to train
the nonlinear and linear parameters. Here, we chose to
apply the least squares method for the linear weights
parameters and conjugate-gradient iterative optimisation
algorithm for nonlinear ones, i.e., centres and widths of
radial basis functions.

Determination of initial centres and widths: When
designing an RBF network, the most critical task is
certainly the determination of the parameters of the
hidden layer. Hence, in this research, the fuzzy c-means
algorithm 13 applied to determine the mitial parameters.
Given a dataset of input-output pairs, the design matrix 7
is formed by concatenating the regression data matrix X
and the output vector y:

1 YI
. 2=[Xy]
" Yu

Each observation thus is an (n + 1) dimensional column
vector:

T T
Z, = [Xk Yk:I - |:X1,k>X2,k>"'=Xn,k>Yk}

The fuzzy partitioning space for 7 has to satisfy the
followmng conditions:

UIR™ |, I[01] "Lk
c N (9)
Z'J'i,k =L "k 0< Z'J'i,k <N, "
i=1 k=1

The clustering of the data 13 based on the mimmization of
of the c-means functional defined as follows:

[ N
(Z,U,V)=3 > unDi, (10)

i=1 k=1
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where, U contains the cluster and m > 1 is a weighting
exponent that determines the fuzziness of the resulting
partition and it 18 often chosen as m = 2. The mimmization
of T, which represents a nonlinear optimization problem
that can be solved by a simple Picard iteration through
the first-order conditions for stationary points of
(the objective function, where U contains the cluster and
m>1 1s a weighting exponent that determines the fuzziness
of the resulting partition and it is often chosen as m = 2.
The minimization of I, which represents a nonlinear
optimization problem that can be solved by a simple
Picard iteration through the first-order conditions for
stationary points of (the objective function, known as the
Fuzzy C-Means (FCM) algorithm.

The stationary pomts of the  objective
function can be found by adjoming the constramt

ZH By =1,1<k<N

to I by means of Lagrange multipliers:

1(Z,U,v,?)=

pIDIETINS MAD I
=1 k=1

and by setting the gradients of T with respect to
U,V and A to zero. It can be proven that D7, > 0, vi,k if

and m > 1, then (11) is minimized only if:

1 .
M = , 1=i<el<k=N, (12)

C

>(D,,/D,,. )"

1=i<c (13)

The fuzzy c-means scheme is summarized as follows:
Given the data set X and the number of clusters 1<c<N,
the cluster centres are chosen randomly from X.
Tterate fort=1, 2, . . .,
Step 1: Compute the cluster means:

=

(1) 2,
k=l l<i=c (14

(Hi(tklj)

O =

1

.
L}

v

Mz

=
I

1

T
_ . v, = [vivy ]

It 15 worth noticing that because the

clustering 1s done 1n the input/output space.

Step 2: Compute the distance measure:

D (Zk, @):(Zk (t))F,‘(zk-Vfﬁ)T (15)
With F; is the weighted covariance matrix:

(1) (5, -v0)(z, -v0)
ZN‘,(ME?;)

k=

=

el
Il
;
ﬂ‘

Step 3: Update the partition matrix:

n _

Wi = — o
JZI:( 7.,V 1(t) /D]k Zk, l(t) )Zf( 1) (16)
Until HU“) —U(”)H <e
RESULTS

The quantities that have been taken into account for
the pollution prediction are hourly sampled measurements
values of SO, and several pollutants,
meteorological variables (Table 1). The aim 1s to perform
the pollution prediction and therefore to build-up a d-step
ahead forecasting model (d = 6 h) for the howly SO,
concentrations. The data set, which we used to build
the database for the neural network, 1s constituted
by the hourly values related to the period that goes
from 30/08/2004 to 20/09/2004. Time series of 15 days
(360 pomts) was used to build the tramning data set, while
the remaining the data of the rest 7 days were used to
build the testing data set (168 points). The data were pre-
processed in order to eliminate instrument errors,

as well as

replacing the missing data with the linear interpolative
function. In addition, each value in the neural network
was normalized in the range [-1,1] using the following
linear transformation:

X':(x-xm)/(xmax-xm) (7

Where, x' 18 the new normalized value, x 15 the old value,
X Xy and x are the maximum, mimmum and mean
values, respectively. The set of normalized values was
used as neural network mput.

Table 1: Characteristic variables of the phenomena
Input variable

Particulate matter PM; pg m—>

Temperature T, °C

Wind velocity WV m sec™

Relative humidity RH, %

Qutput variable
SO, pgm™
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Fig. 2: SO, concentrations forecasting using the RBF
network with the measured data (solid line) and
forecasted (dashed line) for the training data set (a)
and testing data set (b)

To evaluate the validity of the suggested modelling
strategy in the prediction of pollution, the traditional
Multiple Linear Regression (MLR) has been applied to the
same task. The prediction results are evaluated by using
as performance index the root mean square error, which is

defined as:
1,. 2
RMSE = /ﬁ(y(t)-y(t)) (18)

with t is the sample number, ¥ (t) the predicted value and
y () the measured value. The missing data are
reconstructed by using the linear interpolation function.
The MLR model is given by:

S0, (t) =-0.3908 + 0.9649PM,, (t- d)
+0.0012T (t-d) +0.0282RH(t-d) ~ (19)
+0.0037WV (t-d) +0.525080 (t-d)

and the selected RBF network has 6 inputs, 12 neurons
in the hidden layer and one output neuron. The fuzzy
c-means algorithm was applied with ¢ = 12. The learning
process based on the hybrid learning algorithm has taken
100 epochs.

As shown in Table 2, the RBF network presents
the most accurate prediction capability. This indicates

Table 2: Comparison of RMSE between two different methods

RMSE RMSE

(Training data) (Test data)
MLR 2.1448 2.1767
RBF 1.5768 1.6759

that the linear modelling is inappropriate to describe the
functional relationship between sulphur dioxide
concentration and its precursors. Figure 2 indicates
clearly that the RBF network is able to predict the SO,
concentrations with a good accuracy.

CONCLUSION

The aim of this preliminary study is to develop a
predictive nonlinear model to forecast sulphur dioxide
concentrations several hours in advance, in order to have
the opportunity to take emergency actions when
conditions that favour high levels are foreseen or to
diagnose the operation of the air quality network. The
results have shown that the proposed model can produce
good performances. The knowledge of actual
meteorological conditions improves pollutant forecasting.
Nonlinear effects are important when combining pollutant
and meteorological information as input. Our future
research should address the issue of input variable
selection and the use of other learning strategies.
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