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Abstract: This study presents a multi-stage system for reliable heart thythm momtoring and diagnosis. It 1s
comprised of three components including data pre-processing and feature extraction, abnormal arrhythmia
detection and diagnosis. In the first stage, three different feature extraction methods are applied together to
obtain a composite representation of the ECG waveform. In the second stage, the Multivanate Statistical
Process Monitoring (MSPM) approach 1s used to capture the natural variations of the normal cardiac state and
to detect any abnormal arthythmia. Then a feed-forward neural networlk is used to classify the abnormal
arrhythmia in 5 different classes. The results of experiments show the good performance of the proposed

systerm.
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INTRODUCTION
Electrocardiology has a fundamental role in
cardiology since it consists of effective, non invasive,
low-cost procedures for the detection, diagnosis and
treatment of cardiac diseases. The cardiovascular
pathological alterations observable by electrocardiology
can be affected to three main groups: Cardiac rthythm
disturbances (or arrhythmia), dysfunction of myocardial
blood perfusion (or cardiac 1schemia), chronic alternation
of the mechanical structure of heart. Many cardiovascular
diseases, caused by some kind of physical malfunction of
one or several parts of the heart, have a reflection on the
shape of the ECG signal. Thus, the ECG analysis has been
particularly studied since it provides much information
about the current state of the heart.

The ECG signal has a time periodicity which allows
the defimtion of an mdividual beat composed by specific
elementary waveforms. The study of the elementary
waveforms and their dynamics constitutes the basis of the
ECG signal analysis. The most striking waveform within
the ECG 1s the QRS complex. Since it reflects the electrical
activity within the heart during the ventricular
contraction, the time of its occurrence as well as its shape
provide rich information for the diagnosis. For instance,
it serves as the basis for automated determination of the
heart rate, as an entry point for classification schemes of

the cardiac cycle. In the same way, the time-distance
between 2 comsecutive QRS-complexes, known as
RR-interval, is used to distinguish between certain types
of cardiac rhythms. As a result, reliable ECG analysis
depends heavily on the QRS detection step. In general,
automatic ECG pattern recognition can be viewed as a
sequential process involving two main steps: the feature
extraction and the diagnosis task. Feature extraction can
be regarded as a condensed representation of the mitial
pattern to some qualitative and quantitative features.
Then, the classification 1s carried out, 1.e., specific pattern
15 assigned to a specific class according to the
characteristic features selected for it.

Within the last decade many methods to segment
heartbeat automatically have been proposed (Hu and
Tompkins, 1985; Thakor et al., 1993). On the other hand,
regarding the beat classification task, a large number of
techniques have been previously reported, using a variety
of features to represent the ECG and a number of
classification methods. Features include mterval features,
frequency-based features, higher order cumulants,
Karhunen-Loéve expansion, orthogonal polynomials,

autoregressive and wavelet based features. The
classification techniques employed include linear
discriminants,  back-propagation neural networks,

self~orgamzing maps with learming vector quantification,
self-organizing networks and fuzzy logic.
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In this study, a heart beat recognition system is
proposed in which multiple features extracted from
various descriptors were reduced in dimensionality by the
well known linear subspace method, Principal Component
Analysis (PCA) and a Feed-Forward Artificial Neural
Network (FANN) we designed to classify heart beats into
corresponding categories. The concerned arthythmia
categories are Normal beat (N), Premature Ventricular
Contraction (PVC), Atrial Premature Contraction (APC),
TLeft Bundle Brunch Block (I.LBBB), Right Bundle Brunch
Block (RBBB) and Paced beat (P).

MATERIALS AND METHODS

The global scheme of the automatic heartbeat
monitoring and classification presented n this research
is composed of 3 main stages as shown in Fig. 1. The first
step involves noise cancellation, R peak detection and
beat segmentation in various waveforms for feature
extraction. For a better characterization of the ECG
waveform, multiple features are extracted simultaneously
to form a composite vector. Then, the detection stage
based on Multivariate Statistical Process Momnitoring
(MSPM) approach 1s used to detect abnormal arrhythmia.
Finally, the neural networlk classifier will label the detected
abnormal cardiac state as one of five classes of
arrthythmia. Figure 2 displays samples of the arthythmia
categories under consideration.

ECG pre-processing and waveform description: The
digitized ECG signals obtained from MIT-BIH arrhythmia
database (Mark and Moody, 1988) were pre-processed
with band pass filter of 1-100 Hz to remove baseline
wander, power lme interference and high frequency
noises (Minami et al, 1999). In order to detect R wave,
peak detection process 1s employed (Hu and Tompkins,
1985; Thakor et al., 1993). Centred on the detected R-wave
peak, the ECG beats are extracted by applying a Hamming
window with 128 samples of length. In general, automatic
ECG beat recogmition relies on several features extracted
from ECG beat, mainly in the temporal domain, such as the
width and height of QRS complex, RR interval, QRS area,
etc. Since these temporal features are very sensitive to
variations m morphology and temporal characteristics,
other parameters can be extracted from the frequency
domain, such as the measure of energy in a band of
frequencies. The multi-resolution analysis has been also
used extensively in recent years. In order to improve the
system performance, a common way is to define some
characteristic features in different domains that are more
robust to varations of ECG morphology. Unfortunately,
this 13 accompanied by an mcrease mn the number of 1nput
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Fig. 1: Architecture of the proposed system
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Fig. 2: ECG signals of 6 classes: Normal Sinus Rhythm
beats (NSR); Left Bundle Branch Block Beats
(LBBB), Right Bundle Branch Block Beats (RBBB);

Pace beat (PACE), Premature Ventricular
Contraction beats (PVC), Atrial Premature
Contraction (APC)

features. This calls for an effective solution to select the
most informative features for a possible reduction of the
input dimension. To this end, the subspace approach can
be used to handle the above issue. In the present study,
three sets of features describing 1solated ECG beats are
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proposed as candidates to form a compact representation,
which in its turn is reduced by subspace projection
(Oga, 1983).

Linear prediction coefficients: A linear auto-regressive
model can be used in time series analysis to predict the
value of the next sample of a signal, the latter 1s taken as
a linear combmation of the previous samples. The next
sample of the time series, 3, is predicted as the weighted

sum of the p previous samples, S5, ,, S, ,.., 5,, and can
thus be written:
P
5, = 2 a8, +e (1)
1=1
Where a,, a,, ..., a, represent the model ceefficients

and p its order. The residual error, e, is a white noise of
variance 0° and which represents the prediction error.
The Z-transform of the above equation reads:

S(z)[l+1zp;alzi}— E(z) @

The signal s, can thus be seen like the passage of
white noise e, of variance ¢” through a filter of transfer
function H (z):

1

[1 + Zp: a, zlj ®)

The identification of the a, coefficients can be
performed by mimmizing the mean square value of the
residual errors over an analysis window. For the purpose
of the study under consideration, the Burg algorithm has
been used.

H(z)=

DWT based features: The Continuous Wavelet
Transform (CWT) is defined as the integral of the signal
s(t) multiplied by scaled, shifted versions of a basic
wavelet function Y(t):

cla,t) = Is(t)%q{%}d}t,a eR*-{0},beR (4)

Where, a 1s the so-called scaling parameters, b 13
the time localisation parameter. Associated with wavelet
P, which i3 used to define the details in the
decomposition, a scaling function ¢ is used to define the
approximations. To avoid mtractable computations of
the CWT, scales and positions can be chosen based
on a power of two, ie. dyadic scales and positions.
The Discrete Wavelet Transform (DWT) analysis 18 more

ln] —>@£>

x[n]
g[n]
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Fig. 3: Subband decomposition of discrete wavelet
transform 1mplementation; g[n] is the high-pass
filter, hin] 1s the low pass filter

efficient and accurate (Daubechies, 1998). In this scheme,
the parameters a and b are given by:

(ik)ez':a=2.b=k2,Z={0.£1£2,--}
This allows us to define
v (1) =27 y(27t - k), ¢, (1) =27"2¢(27t - k) (5)

A wavelet filter with impulse response g, plays the
role of the wavelet |y and a scaling filter with impulse
response h, plays the role of scaling function ¢. Figure 3
shows the principle of the dyadic wavelet decomposition.
Thus, the DWT can be described mathematically as:

o(j.k) =2 8(n)g; (n)

neZ (6)
a=2",b=k2',jeN, keN

The detail at level j is defined as:

D,(t)= > e(i.kw (1) (7

keZ

In practice, the decomposition can be determined
iteratively, with approximations being
computed, such that the analysed signal i1s decomposed
into many lower-resolution components. In the present
study, a five level DWT is defined and the normalized
variances of the details coefficients are used as features.

successive

Higher order statistics: Since the physiological signals,
in general, are very complex and may be distributed
according to Gaussian white and colour noises with
unknown frequencies, the higher order statistics offer a
promising way to mimmize the effect of these noises.
Assuming that the signal of interest has zero mean and
discrete in time, three types of statistics have been taken
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into account: the second-, third-and fourth order
cumulants of a zero-mean stationary process are defined

by Nikias and Petropulu (1993).

CZX(k):E{X*(n)X(n+k)} (8)
ij(k,l):E{X*(n)x(n+k)x(n+l)} )]

C,lkLm)= E{X*(n)x(n+ k)x(n+1)x"(n +m)}
—C,(K)C,, (1-m)-C, (1O, (k-m) (19
— M, (m)M,, (k-1)

Where E means the expectation operator and k, 1, m
the time lags M., (k) = BE{x(m)*(nr+k)} and equals C, (k) for
a real-valued process. The first-order cumulant is the
mean of the process and the second-order cumulant 1s the
autocovariance sequence. The zero-lag cumulants have
special names: C,(0) 13 the variance and 1s usually
denoted by ¢°; C,,(0,0) and C,(0,0,0) are usually dencted
by r,, and r.,. The normalized quantities, r,,/o” and r,/¢"
are referred to as skewness and kurtosis, respectively.
These normalized quantities are both time shift and scale
invariant. In this research, we have extracted three points
of the 3rd and 4th cumulants eventually distributed within
the range of 15 lags.

Detection stage: Tet us consider a process data
matrix X(N x n) composed of N sample vectors with n
variables measurements. Denote the correlation matrix
of X as T =x"X/(N - 1) and performing Singular Value
Decomposition (SVD) to the matrix X yields

%= UAUT (an

Where, U, is a unitary matrix and A = diag (A,,...4,)

15 a diagonal one containing the eigenvalues in
decreasing order. The column vectors in the matrix

U =[u,,..., u,] form a new orthogonal base of space R* and
the first q(q < n) linear independence vectors.

P:[ul,uz,---,uq}

of U spans the principal component subspace 8. The
other n- g vectors

P= |:uq+l’uq+2’.“’un}

of U spans the residual subspace §. Selecting the
correct number of principal components to retain n a

model is a nontrivial task and there are many subjective
rules that can be used to help with this task. The number
of principal components to retain can be selected as its
Cumulative Percent Variance (CPV) 1s larger than a
prescribed threshold (Jackson and Mudholkar, 1979). The
data vector x € R® can be decomposed as

x=R+%=Cx+Cx (12)
Where, ¢ =§ and < § are projection of x on the
subspaces § and §, respectively. The matrix

C'=PPTandC = PPT

are the corresponding projection operators. The score
vector in the space model space

z=P"xeR"

15 a reduced, g-dimensional representation of the
observed vector x. More specifically, the jth principal
component 1s

7= Py T PyXy et PX, (13)

Where p, is the weight value that reflects the
contribution of x; to a PC z. As tried by this study, PCs
that were extracted from data reduction through PCA can
be used as inputs to the next step analysis. The PCA
statistical monitoring model 1s build on two hypothesis
tests in subspaces § and & . The statistic used in § is the
Hotelling T” which is defined as

T = [A,Bx] < T, (14)

With A, = diaj (A,...A,). The statistic used in 8 is the
Q-statistic or the Sum of Prediction Error (SPE), which 1s
defined as below

SPE=[Cx| <82 (15)

Where &, is the control limit for SPE index. The 100
{1- )% control limit for T? is calculated by means of an
F-distribution as follows:

i
Thm_

! F(q,N-10) (16)

Where, F(q, N - 1, &) is an F-distribution with degrees
of freedom g and N -1 and with level of significance ¢. A
confidence limit expression for SPE can be computed from

its approximate distribution (Jackson and Mudholkar,
1979):
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Fig. 4. Architecture of the Feedforward Artifical Neural
Network (FANN) classifier

.Si :g'xi‘u (1721)
g=9,/6, (17b)
h=0:/0, (17¢)

Where, 0, = 2 %, fori=1,2

=g+l

Classification stage: Once an abnormal arrhythmia is
detected, the projection of the feature vector describing
the ECG waveform in the principal component subspace
is fed to the classification stage. The emploved classifier
was a feed-forward artificial neural network (Fig. 4) with
one hidden layer with appropriate number of hidden
neurons (Hartman et al., 1990, Poggio and Girosi, 1990).
The input of the networls is formed by the vector

_ T
Z:(Zla'":zq)

Where, q 1s the number of input variables. In this case, z
is the score vector of a composite vector X including
three representations, i.e. autoregressive coefficients, the
parameters derived from the discrete wavelet transform
and higher order statistics. The jth output of the network,
v j, 18 defined by the following equations:

H
y, =f@(a ) ;= 3 wido, + wips j=1-.C
et (18)
q
b, = f(”(ng)zl + wgg}, h=1--H

i=1

Where C is the number of hidden neurons, the super
index indicates the number of layer, w are the weights of
the neural network and {0 and (% are the activation
functions of the neurons of the hidden and output layers,
respectively. In this research, the hyperbolic tangent
function was used for f and the soft-max activation
function was used for f, because this makes possible to
interpret the outputs as probabilities and is defined as:

e

£ (a,)= 19)

i/ c ak
DI

With the aim of obtaiming the optimal set of values for
the network weights that minimizes the error function for
a given traimng data while having a good generalisation
ability for unseen data, the following cost function is
employed:

E(w)=E,(W)+oE, (%) (20)

It 15 defined as a regularized maximum likelihood cost
function, in which the E_ (W) term measures the error
obtained when the output of the network is compared
with the target. In tlus study, the cross-entropy error
function has been used as it is the more suitable for
classification tasks. Therefore, E (W) is defined as:

N C
E (W)=-> Ztgkjln(yj(w,z(k))) (21)

k=1 j=1
Where N is the number of training data, C the number
of classes,
(k) (k)
(2.0

is the set of training pairs; 2% is the kth input vector and
t¥ its expected output given by:

H (k)
(o 1 if z¥eC, (22)
! 0 otherwise

The second term in (11), E, (%) 1s a regularization
term called weight decay, defined as:

EW(W):EZW.Z (23)

Where, N, 1s the number of weights of the neural
network and w; the ith component of W . The use of this
term avoids the over fitting problem and thus it improves
the generalisation of the network.
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THE RESULTS OF NUMERICAL EXPERIMENTS

The ECGE records with normal beats and different
types of arthythmia are selected fom the MIT/BIH
arrythmia database (Mark and Moody, 1988). The MIT-
BIHECG records are 2 channels, 30 min duration, sampled
at 360 sampless per channel with 11-bit resolution over a
10 mV range. Two or more cardiclogists independently
annotated each record; disagreements were resolved to
obtain the computer-readable annotations for each beat
Each type heartheat was extracted from the record which
contained most beats of this type. In cur experiment, six
different types of ECG classes including Normal (), Left
Bundle Branch Block (LBBB), Right Bundle Branch Block
(EBBB), Pace beat (PACE), Premature Ventricular
Contraction (FVC) and Atrial Premature Contraction
(APC) beats are extracted, respectively from five ECG

records (files numbered 100, 109, 118, 107, 208 and 232).

The selected ECG beats being classified have been
divided in two groups: One used for the leaming
purposes and the other for testing the performance of the
classifier. Table 1 shows the selected ECG beats. Due to
the scarcity of data corresponding to some beat types the
number of data belonging to each beat type is
variable. Table 2 shows the result of classification for all
classes of heart beats for the combined used of PCA-
FANN. In PCA-FANN, the PCA is used for dimensionality
reduction and the feed-forward artificial neural network as
a classifier. Figure 5 shows the eigenvalues and the,

Table 1 :The selected beats

Eeat type Training beats Testitg beats
Normal (M) a7 560
LEEE T30 751
REEE 654 a0
FACE a6 4320
FVC 300 2490
APC 435 345
Totd 2284 2878

Table 2 Owerall performance of the proposed system PCA-FANN in testing

mods

Eeat type Classified Accuracy (%
Hormal 347 o7 68
LEEE 738 0z 27
REEE a04 EER
FACE 409 o7 38
PV 280 100

APC 340 0z 05
Total 2EIR oz 51

Table 3. Comparative results of ECG beat classifiers
Mumber of beat types  Efficiency
MLP-Fouier (Winami ef 2l 1999 3 98

BOM-3VD (Huefal, 1997) 4 022
Fhyb- HOSA (Osowrski and Link, 2001) 7 26.06
FCA-FANN i 0851

100

50

Variances (34}

Eigen values
i

c T T T T L T = T & 3

2 4 ] [ 19 12 14 16

Fig 5: Eigenvalues  and
variances %

respective  cumulative

Value of T? with 55 percent lirit based on PCA model

Variance T?

30 100 150 200 250 300
Sample no

Fig. 6: The T® statistic (solid line) and itz control limit
(dashed line)

respective cumulative variances %. The T statistic and its
control limit for the training normal beats dataset are given
in Fig. & For the same dataset the SPE statistic and its
control limit are given inFig. 7. Tt is worth noticing that for
sormne samples (beats) the 2 statistics are higher than their
control limits and this generates false detection alarms.
This means that the linear model has failed to certain
extent to capture the natural wariations of the normal
beats. Obwvicusly, a false alarm can be confirmed or not by
the classification module.

Toevaluate the performance of the detection module,
a subset of normal beats followed by an abnormal
rhythms is used to compute the SFE statistic as shown in
Fig 8.

The average misclassification rate for both learning
and test sets is very small and the recognition rate in the
test mode is approximately 98.51%. In order to compare
the obtained results with other techniques. Table 3
summarizes the comparative results betw een the following
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Frocess residual O with 55 percent it based on PCA model
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Fig. 7:The ZPE statistic (solid line) and its control limit
(dashed line)
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Fig 8:The SPE statistic and its control limit for 150
normal beats followed by 150 abnormal rhythms of
the LEBE class

classifiers:  Multi-Layer Perceptron with Fourier
transform (MLP-Fourter) (Hu ef al., 1997, Self-Organizing
Maps and Singular Value Decomposition (3OM-ZVIN)
(Csowski and Linh, 2001), Fuzzy hybrid neural networls
(Fhyb-HOB A Minami efal., 1999), PCA-FANN. However,
it is nteresting to mention that patients and rhythms
selected in all compared experiments were different.
Hence fair comparison of the classifiers and their
results is very difficult. Moreover, since different numbers
of beat types have been used in the abave methods, the
second column of Table 3 gives the number of these beat
types or classes and column 3 shows the overall
recognition rate.

CONCLUSION

This study describes a new system for the detection
and the classification of cardiac arrhythrmia using the
subspace approach and artificial neural networks in order
to imnprove the quality of the diagnosis. The results from
a relatively large dataset of actual ECG signals from &
different classes showed that the proposed systemn gives
good performances Future research should address the
use of a nonlinear generalisation of PCA to overcome the
limitations of global linear PCA as well as more
sophisticated classification schemes to improve the
results.
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