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Abstract: Petrophysical log interpretation is one of the most useful and important tools available to a petroleum
geologist. Well logs help to define physical rock characteristics such as lithology, porosity, permeability and
to identify productive zones, to determine depth and thickness of zones, to distinguish between oil, gas, or
water in a reservoir and to estimate hydrocarbon reserves. This study presents the results of a study that used

unsupervised Self Orgamizing Map (SOM) artificial neural networks and fuzzy rules derived from log
characteristics for the determination of oil well lithology from open-hole geophysical well logs. The
methodology proposed for the identification of o1l well lithology was tested with case data obtained from an
o1l well located in the Niger delta region of Nigeria. The result shows that the fuzzy logic based log
mterpretation model used for the analysis of the clusters (log-facies) generated from the well logs can be used
to identify and classify the lithology of o1l wells without the use of core sample data.
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INTRODUCTION
Artificizal Neural Networks are non-linear,
sophisticated modeling techmques capable of modeling
extremely complex functions (Statsoft, 2002). Artificial
Neural Networks can transform a lnearly mseparable
problem into a linearly separable one. They learn by
example and can be applied in virtually every situation in
which a relationship between the predictor variables
(independents, inputs) and predicted
(dependents, outputs) exists. They are applicable even
when the relationship may be very complex and not easy

variables

to articulate in the usual terms of "correlations" or
differences between groups.

Artificial Neural Networks can be trained using either
the supervised or the unsupervised learmning or tramning
techmques (Statsoft, 2002). In supervised learning, the
correct results (target values, desired outputs) are known
and are given to the network during training. The network
can adjust its weights to match its outputs to the target
values and the network leams to infer the relationship
between the two. Training data is usually taken from
historical records. The network is trained using one of the
supervised learning algorithms of which the best-known
example 18 the back propagation method.

Artificial Neural Networks that use the unsupervised
learning paradigms are very simple, one-layer networks.
In unsupervised learming there 1s no teacher and the
network must self-organize according to some internal
rules m response to the environment. A number of
unsupervised leamning algorithms exist. Some of these are
the Hebbian and the Competitive learning methods
(Statsoft, 2002). The Hebbian learming 1s the most common
variety of unsupervised learming. The Oja's and Sangers
unsupervised learning are wvariants of plain Hebbian
learning that can be used for principal component
analysis. The Sanger's learning procedure can also extract
the principal components with respect to the output umt
ordering.

The Kohonen Self-Crgamzing (feature) Map (SOM)
network (Kohonen, 1995) uses the competiive leaming
method. The SOM network has only two layers of
processing elements (or neurons). These are the nput
layer and an output layer of radial units (also known as
the topological map layer). The units in the topological
map layer are laid out in space, usually in two dimensions.
The SOM artificial neural network which combines
competitive learning with dimensionality reduction can be
used for exploratory data analysis, classification tasks and
novelty detection.
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The basic theory of fuzzy sets was first introduced
by Zadeh (1965). Unlike classical logic, which is based on
crisp sets of "true and false", fuzzy logic views problems
as a degree of "truth", or "fuzzy sets of true and false". It
is a methodology that was developed to obtain an
approximate solution where the problems are subject to
vague description. The major concept of fuzzy logic 1s
the use of a linguistic variable which 1s a variable whose
values are words or sentences in a natural or synthetic
language. This also leads to the use of fuzzy if-then rules,
m  which the antecedent and consequents are
propositions contamning linguistic variables.

Neuro-fuzzy modeling is a technique for describing
the behavior of a system using fuzzy inference rules
within a neural network structure. The model has a uruque
feature 1 that 1t can express lmguistically the
characteristics of a complex nonlinear system. In recent
years, fuzzy logic, or more generally, fuzzy set theory,
has been applied extensively in many reservorr
characterization studies (Nikravesh and Aminzadeh, 2002).
This is mainly due to the fact that reservoir geology is
mainly a descriptive science which uses mostly uncertain,
umprecise, ambiguous and lingustic mformation. Fuzzy set
theory has the ability to deal with such information and to
combine them with the quantitative observations.

The prediction of lithofacies (that is, rock type
identification) 1s important for many geological and
engineering disciplines. The conventional method used
for the identification of lithofacies is by direct observation
of underground cores (Chang et al., 2002). These are small
cylindrical rock samples, retrieved from oil wells at
selected well depths. The recovery of cores 1s an
expensive process and is not always total. In addition,
different geologists may provide different interpretations
for the retrieved core samples. This is why a lower-cost
method providing similar or ligher accuracy 1s desirable
(Chang et al., 2002). Tn an attempt to solve such reservoir
characterization problems using differed well logging
measurements, some researchers in geosciences have
employed statistical methods and the use of artificial
neural networks. Some published research using some of
these techniques to solve reservoir characterization and
lithology determination or prediction problems include:
Soto and Holditch (1999), Mohaghegh (2000), Chang ef al.
(2000), Ford and Kelly (2001), Barlai (2002) and
Chikhi et al. (2004). Most of the researches used
supervised neural networks tramed with core samples to
recognize rock types present in a fresh data set previously
unseen by the neural network. Chang et al (2002)
reported the use of an unsupervised SOM network to
generate clusters in log data and used classified core data
for the lithology 1dentification program.

From studies of well log characteristics the well logs
that can be used for lithology determination are Gamma
Ray (GR) log, Demnsity (DEN) log, Neutron (NEU) log,
Electrical Resistivity (RES) log. Gamma ray logs measure
natural radioactivity in formations. Shale-free sandstones
and carbonates give low gamma ray readings. As shale
content increases, the gamma ray log response also
increases. The resistivity log is a measure of a formation’s
resistivity. Most rock materials are essentially insulators,
while their enclosed fluids are conductors. When a
formation 1s porous and contains salty water, the overall
resistivity will be low. When this same formation contains
hydrocarbons, its resistivity will be very high Shales
show low resistivity values with high gamma ray values.
The density log 15 a continuous record of a formation’s
bulk density. It 1s used mainly for the determination of
porosity and the differentiation between liquids and
gases (when used in combination with neutron log).
When organic content 1s present, density 1s low. Variation
of density indicates porosity changes. For example, low
density indicates high porosity and vice-versa. On
cross-plot of neutron and density logs, pure shale can be
recognized by the high neutron value relative to the
density value which gives a large positive separation to
the logs while gas stands out distinctly giving a large
negative separation.

This study presents the result of a study that
proposed a methodology for the identification and
classification of oil well lithology and fluid content using
a SOM neural network to generate log-facies or electro-
facies (Rider, 1996) from geophysical well logs and fuzzy
rules generated from the known physical properties of
the well logs. With the fuzzy rules the lithology of the
wells can be determined without the use of core sample
data. A case study program was implemented using case
data from the Niger Delta region of Nigeria. The Niger
Delta is situated in the Gulf of Guinea and extends
throughout the Niger Delta Provinece. It contains only
one 1dentified petroleum system referred to as the
Tertiary Niger Delta (Akata-Agbada) Petroleumn System
(Tuttle et al., 1999). Tt is composed of mainly sedimentary
rock and divided into three formations. These are Benin
formation, Agbada formation and Akata formation. The
Benin formation consists of mainly sand, the Agbada
formation consists of sand and shale, while the Akata
formation consists of shale. Limestone and salts are not
found in the Niger Delta region. The depth of the Benin
formation 1s about 6,000 ft, the Agbada formation about
17,000 ft and Akata formation about 6,000 ft. The source
rocks for the petroleum system are located in the Akata
formation while the petroleum reservoirs are located in the
Agabda formation.
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MATERIALS AND METHODS

The base data used for the lithology determination
are the open-hole wireline subsurface well log data. Cross-
plot techniques are employed in the analysis of well log
data. The log data models the response of the subsurface
rocks to the measuring instrument according to the rock
properties. The cross-plots allow the nature of the rocks
properties to be inferred from the logs. However, due to
visualization problems, the cross-plots cannot handle
more than 3-dimensional data. Tt was observed that the
operation of the SOM based clustering algorithm 1s similar
to plotting a multi-dimensional log cross-plot. It is noted
that in the conventional cross-plot chart, if the
dimensions of the chart are more than three dimensions,
the visualization and mterpretation of the cross-plot chart
becomes more complex. The SOM based clustering
algorithm has the advantage of not being limited to
three dimensions.

The analysis of the well logs begins by first cleaning
the log data. Erronecus data items and outliers were
removed from the raw well log data. A correlation test was
performed on the log values to determine if there was any
relationship between the log data values. Knowing the
nature of the relationships also helps in the selection of
the appropriate log variables when similar data items are
present in the data records. The data elements were
normalized (between the range 0 and 1) to renders the
input data dimensionless and remove the effect of
scaling. The neural network was then tramned using a
training data set.

After traimng the SOM, the neural network would
have learned the structure of the input data. The testing
data file, which contains the data that is to be clustered,
1s now submitted to the trained SOM network, which then
identifies the clusters it has recognmzed during the traiming
process. The test data file may be the same as the training
data file or any other data file, which 1s to be classified,
based on the clusters identified by the training data set.
The data samples are assigned to cluster groups by the
SOM software and the result saved in either a
spreadsheet file or an ASCII text file. Each data sample 1s
assigned a label (number) showing the cluster to which it
has been assigned. The output file 1s umported nto a
spreadsheet file, sorted to group data samples belonging
to the same clusters together and then the mean and
standard deviation of each cluster group computed.

The computed mean of the log values were used to
infer the lithology and fluid content of the rock species
that characterize the geological formation of the oil well
being investigated by determining their fuzzy value. ITn a
fuzzy system, the general mference process proceeds in
the following steps.

Fig. 1: Fuzzy membership functions

+  Fuzzification which involves the conversion of
numeric data in real world domain to fuzzy numbers
in fuzzy domain.

»  Fuzzy inference which involves the computation of
the truth value of each rule and its application to the
conclusion part of the rule.

+  Composition of the output variables of sub rules
which can fire in parallel for the purpose of drawing
a global conclusion.

»  Deffuzafication, which is optional, mvolves the
conversion of the derived fuzzy number to the
numeric data in real world domain.

The fuzzy value of the logs can be modeled by four
fuzzy membership functions which correspond to the
linguistic values High (H), Moderate (M), or Low (L) as
shown in Fig. 1.

The fuzzy wvalues are used to generate fuzzy rules
for the identification of rock lithologies represented by
log data clusters generated by the SOM software.
Mathematically this can be represented by Eq. 1 as:

{Hifbz=x<e¢
¥ = {Mifarx<b (1
{Lifx=a

Where,
x, represents mean value of subset j (of log reading)
a, b and ¢ represents threshold values

In determining, the threshold value a, b and ¢ used in
this work the following were noted:

»  The gamma ray log value in shales varies enormously
in any one area or well and it ranges between 40 and
112 API and in sandstones ranges between 10 and
50 APT (Rider, 1996). The threshold values used for
the Gamma Ray log (GR) are:

a=40APLLb=50APL c=112 API

»  There are no characteristic resistivity limits for
shales, limestone and sandstone (Rider, 1996).
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However, it is noted that resistivity values are low for
shales, sandstone and water. Tt is high for
hydrocarbons (oil/gas). The threshold values used
for the un-mnvaded resistivity log (RES) are:

a =10 ohm-m, b =100 chm-m, ¢ = 300 chm-m

* In shales the density log value ranges between 1.18
and 2.75 g cm™, while in sandstones it ranges
between 1.9 and 2.65 g cm ™. Since oilfield densities
are usually between 2.0 and 3.0 g cm ™~ and the mean
apparent dry bulk density for shales is 2.45 g cm™
(Rider, 1996). The threshold values used for the
Density (DEN) log are:

3

a=245gem ., b=265gem % c=30gcm™

In order to generate the fuzzy rules to be used for the
analysis of the clusters a rock properties determmation
matrix was created using the known log properties. Using
three fuzzy membership functions and three logs gave 27
unique combinations. Not all the rules are physically
feasible. However, since the known primary lithology 1s
sand and shale, this provides a way for reducing the
mumber of rules generated to a more manageable and
effective number by selecting only the rules relevant to
the objective of the study. These are the rules for
determimng the well lithology which is classified as being
shale, sandy-shale, pay sand and wet sand. The relevant
combinations are presented in Table 1. In deriving the
rules, the following were considered:

¢ The gamma ray log, which is the primary lithology
log, was used to determine the primary lithology of
the rock type.

»  Next, the resistivity log was used to determme 1if
there is any hydrocarbon presence indicated by a
high resistivity log value.

*  Finally, the density log was used to further
characterize the lithofacies.

The fuzzy rules inferred from the rules determination
maltrix are:

1. If(GR=H)and (RES=1L)and (DEN =H or M)
Then (Lithology = Shale)

2. (GR=L)and (RES =L) and (DEN = H or M)
Then (Lithology = Sandy-shale)

3. If(GR=L)and (RES =H) and (DEN = M)
Then (Lithology = Pay Sand)

4. If(GR=L)and (RES = H) and (DEN = L)
Then (Lithology = Pay Sand)

5. If(GR=1)and (RES = M) and (DEN = M)
Then (Lithology = Pay Sand)

6. TIf(GR=TL)and (RES =M)and (DEN =1.)
Then (Lithology = Pay Sand)

7. If(GR=TL)and (RES=L)and (DEN =1.)
Then (Lithology = Wet sand)

RESULTS AND DISCUSSION

Case studies using well log data from the Niger Delta
region of Nigeria (obtained from Shell Petroleum
Development Corporation with the permission of the
Department of Petroleum Resowurces, Nigeria) were carried
out. The log data contains the Depth (DEP), the True
Vertical Depth (TVD), Gamma Ray log (GR), Resistivity log
(RES) and Density log (DEN). The log had 3941 data
elements which ranged from 7000-11870 ft. A correlation
test was camrled out on the input data. The result
showed that the Depth (DEP) and True Vertical Depth
(TVD) were highly cormrelated hence, only the Depth
(DEP) values were used. The well logs were then
normalized. The data was then used to tram the SOM
software and clusters were generated. The mean log value

Table 1: Fuzzy rules detemmination matrix

GR value RES value DEN value Indicated lithology

1 HorM L HorM Shale

2 L L HorM Sandy-shale

3 L. H M Pay sand

4 L H L Pay sand

5 L. M M Pay sand

5 L M L Pay sand

6 I I I Wet sands

Table 2: Clusters generated by SOM software

No. of

Cluster samples GR RES DEN

1 18 Mean 3301778 493.666668 2.375
SD 3.345639 120.187046 0.025029394

2 3 Mean 40.89333 567.64331 2.33666667
SD 1.247812 4.1311504 0.04163332

3 56 Mean 35.73875 91.053929 243821429
SD 3.162037 54.191674 0.02249098

4 599 Mean 85.81002 21.328431 2.53435726
SD 2272294 27.803078 0.04879703

5 6 Mean 39.42667 1441.0467 2.30666667
SD 1.456896 250.23838 0.01966384

3] 92 Mean 32.23467 5.61130435 2.428695652
SD 4.573356 0.5782566 0.022833241

7 o4 Mean 36.40203 49.0335937 241921875
SD 3.83719¢6 30.0236259 0.046369965

8 a4 Mean 34.19521 225.854576 2372765957
SD 3.162344 88.2995406 0.029924789

9 162 Mean 91.79079 18.2691089 2499517327
SD 28.73966 35.3942291 0.082534254

10 578 Mean 114.4018 4.80583045 2.621557093
SD 12.52467 1.71185725 0.040848849

11 3 Mean 34.08 54.753334 2.406666667
SD 3.016768 6.50432495 0.015275252

12 812 Mean 104.117 9.53756159 2483054187
SD 24.15951 103751173 0.044311775
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Cluster No Lithology Legend
1 Pay sand 1
2 Pay sand 2
3 Pay sand 3
4 Shale 4
5 Pay sand 5
6 Wet sand 6
7 Pay sand 7
8 Pay sand 8
9 Shale 9
10 Shale 10
11 Pay sand 11
12 Shale 12

Fig. 2: Well stratigraphy chart

Table 3: Intempretation of SOM software clusters

Cluster No Lithology
1 Pay sand
2 Pay sand
3 Pay sand
4 Shale
5 Pay sand
6 Wet sand
7 Pay sand
8 Pay sand
9 Shale
10 Shale
11 Pay sand
12 Shale

and standard deviation of the cluster groups were
computed. The standard deviation measures the spread of
the data about the mean value gives an indication of the
effectiveness of the clusters generated. Table 2 presents
the clusters (represented by a number label) identified in
the log data, their mean values and their standard
deviation.

The fuzzy inference process started with the
fuzzification subprocess where the membership functions
defined on the mput variables were applied to their actual
values to determine the degree of truth for each rule
premise. If a rules premise has a non-zero degree of truth,
then the rule fires. In the inference subprocess, the truth-
value of each rule was computed and applied to its
conclusion part. The fuzzy ‘max’ rule of composition of
inferences was then applied. The results showing the
lithology of the well inferred from the cluster groups is
presented in Table 3.

Figure 2 presents a chart of the oil well showing
the location of the different types of rock materials in
the well. On the chart, the depth intervals containing
pay sand is represented by the vellow colored regions,
depth intervals containing wet sand with water content
15 represented by the blue colored regions. Regions
where shales (or shaly rock materials) can be found are
shown in ochre. Clusters 4, 9, 10 and 12 represent
shales. It can be observed that the difference between
these shale clusters is a progressive increase in the
shale density. Clusters 1, 2, 3, 5, 7, 8 and 11 represents pay

sand clusters. It can also be observed that there 1s a
reduction in pay sand density with increase in pay
sand resistivity values. Cluster 6 represents a wet sand
cluster. A log analyst that was familiar with the data set
used verified the result of the case study program.
The  chart shows relatively thin layers of sand
interbedded within thick and expansive shale umits
(Adesida et al., 2006).

CONCLUSION

In this study, the SOM neural network has been used
to analyze well log data obtained from the Niger-Delta
region of Nigeria in order to extract knowledge from the
well log data. The fuzzy inference methodology adopted
1n the interpretation of the clusters were derived from the
methods used in the interpretation of traditional graphical
cross-plots by log analysts. Well logs characteristic
response in different rock materials were used to formulate
fuzzy rules, which were used to identify the lithology
represented by the clusters generated by the SOM from
well log data.

While it is only the fuzzy rules relevant to the
lithology determination program that have been extracted
in this research, it 1s noted that the rule base actually
accommodates all possible rock materials that may be of
further interest in future research work. With the three
logs used that is gamma ray log, resistivity log and
density log, hithology discrimination has been achieved.
However, better resclution could still be obtamed with
associated fluid content determination carried out by
using logs that can be used to discriminate between fluids
like the neutron log, although this tends to increase the
number of fuzzy rule that can be derived from the logs.

The fuzzy rules can form the basis for the
development of a software tool. A newo-fuzzy expert
system which can use the SOM neural networks
clustering algorithm as a pre-processor for a fuzzy
classification module. Or a fuzzy logic expert system since
the fuzzy rule can also be incorporated into a software
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application that can directly classify the log values by
fuzzify them, analyzing them and then classifying the
mdividual log elements using the fuzzy rules. The
software tool can be used by log analyst to determine the
lithology and fluid content of an cil well prior to further
processing of the log data in absence of core data.
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