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Mathematical Model Selection of a Haulage Mechanism with Static Equilibrium
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Abstract: Haulage installations are subjected to many efforts making their equilibrium difficult in spite, the
use of equilibrium devices. In this study a mathematical model of this type of installation is developed
and studied taking in consideration the factor of traction cable elasticity (dumping factor). If the
dumping factor (or attenuation) of oscillations goes beyond a certain limit, this will provoke a fast and a
considerable propagation of elastic deformations along the cables (on all their length) which unbalances

the installation operation.
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INTRODUCTION

Traction electromechanical systems (haulage
systems) are one of the most research subject studied at
the moment (Tolba et al., 2007, Tolba and Saad, 2003).
Their regulation and control (Tchermalekh et al., 1996)
become complicated especially when different elements
constituting the mechanism and transient states to which
are subjected are taken in consideration. The presence of
such elements has made the mechanism movements
followed up with additional dynamic efforts during the
transient states (braking, accelerations and starting).
In these conditions the load is at its maximal values
and sometimes these values are superior to those
corresponding to the opposite efforts introduced by
the system.

Differential equations resolution goveming the
system dynamic, give the possibility to define not only
the efforts maximum values during braking and starting
states but also the possible different movements of
different elements related by elastic cables.

From verification, solidity and motor robustness
point of view, it is sufficient to know the load maximum
value. Tn these conditions, dynamic loads evaluation is
determined from dynamic coefficient (Walker, 1988;
Davidof, 2001).

Because of masses of different elements and
transmissions transient states cable deformations are
appeared on cables, this will provoke the displacement of
gravity center of elements in question and produce an
increase in potential energy and will lead to an increase to
the corresponding total force.

MATHEMATICAL MODEL DEVELOPMENT

In the machine studied, the presence of elements
having a great deformability (cables), allow to consider

other elements such as: drum, transmission element and
motor as rigid elements. The most appropriate scheme of
this study 18 a haulage system with loads static
equilibrium where main and equilibrium cables are
found Fig. 1a.

The dynamic of the extracting machine with static
equilibrium and taking in consideration main cable bits
and also those of equilibrium 1s shown in Fig. 1b.

All masses are drawn to the drum shaft of rolling up
cable, it can also be found:

F_ . Motrice forces
F. : Effort resulting from of all static resistant
efforts;
m, . Reduced mass of rotating elements;
m,, M Are respectively upward and downward load
masses;
o1 Ty Masses of principal cable bits;

1,1, 1,1, : The length corresponding to cable bits;

Assuming :

W, (p), Wy(p), Wip). W,(p): Transfer functions of cable
bits corresponding to dynamic efforts.

between bits and concentrated masses (in two schemes all
forces have the corresponding masses as origin), thus,

transfer functions are:

appearing at contact points

TIJZ

Wi (p) :?(PZ”“MCBElPﬂL Bczl)_l )
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Fig. 1a: Main and equilibrium cables diagram
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Fig. 1b: System diagram presented by transfer function
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[1 T3t TJP + (1 + 03 )(MCP * 1)803 In order to neglect the elasticity of one or many cable bits,

1n their corresponding transfer function, assuming that:

—_—— Qa3 (P2 + UBEp + 834) U,=Py=c
4(p)= = (4)
1+ + h p2 + (1 + Oy3 )(;_ch + 1) [354 If in the system, the equilibrium cable does not exist, thus:
Wh Oy = Oy = O
ere,
This will lead to establish that the expressions (3) and (4)
Gy = De3 o Med are equal to zero.
325 43 = . .

my ms In order to obtain the mathematical model of the

extracting machine, composed from masses m,, m, and
oscillating dumping factors in main cable bits and  one cable bitmass m, from which m, is obtamed having a
equilibrium cables; length of 1,, we must take in consideration:
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Boo=p =ccand e, = ;=0 doncF , =0 car
F'y(p) Oy
Fpa(p) 140y

As aresult, the functional scheme of Fig. 2a 15 obtained.
If a force is applied to m, then:

F=F. +F

Therefore, the dynamic forces F,, and F',, are determined
by the following expressions under operational form:

B, () =F D)

T
{{1‘*’@12 T}p + 1+ (112 Mcp+1)B§1 (5)

>

Ad +ucoocl+oo )

n ] 27
Oqp)| 1= P +{1ep+1)Bg

(6)

Fyy () =R (p)

A (P2 + “‘cmil + mil)

with:

2

T
Ay =0y + Oy + 0470y + T(4+ Ogp + 0tz ).

Using expressions (5) and (6), for any law of force
variation F (in time), Tt will be easy to determine the
dynamic forces F',; (tet F,(t).

The design of automatic control system and its
dynamic analysis recuires knowing, firstly the speed and
displacement of moving masses. Therefore, it 15 necessary
to know the forces acting on these masses and the
movements produced by their displacements. Tn this case
x, 18 provolked by the masses m,, x,, m; et x;and m,, for
mutial conditions equal to zero, the following relations are
obtained:

X,(p) = m—pz[Fl(p) ~E,(p)+Fy (p)] (7
1
Xa(®)= 5| oy )y (0 ®)
2
X3P =—— | By(0) By ) | ©)

m3p
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Fig. 2a: Bit represented by functional diagram
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Fig. 2b: Machine with one cable bit

For a machine with one cable bat, illustrated in Fig. 2b
and using the expressions (5) and (6), the equations below
are obtained:

%)= e) By )=
1
TEZ 2 2
. L+ 05+ p + {1+ oy )P + 1) g
=—gl oy 2 2 2
myp Acl(p +“‘cmclp+mcl)

If the oscillating dumping factor 1s neglected (p, = 0), thus,
the following expressions are obtained:
TEZ 2
. U1z +7(4+0le) P™+ 0y,
Xy(p)=—"15 s s =
myp At:l(p Jr(Dcl)
2
i
B Ot12+7(4+0:12) a1 1
myA gy Pl oy wa| p° Pt eg

After some necessary transformations, the function below
is found:

2
E 1 x 2m, +m
)il(p): I(P) 2+ ( 2 C)

0P

. (10)
4 ml.mz.Acl(p2 + m%l)
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If it is considered that, the force O is applied gradually,
therefore:

K

X1(t):m—1
0

2

2 T[T(hnz-#—mc)2

t

., (1-cosmyt) |=(11)
2 myamy{onyy+ oy + 00y ) )

E |t? 2(m,+m
At (27“)(17003030@

mgy| 2 4m,.C,

Where:
2
o :KC.SC _ag Yo,
C
N lig

With, A, S, ¥. Ll are respectively, elasticity factor,
transversal section, metric weight and cable length
g =981m/s".

To venfy the validity of this mathematical model
llustrated by the functional schemes of Fig. 1b and
Fig. 2a, the displacement x, of the mass m, is determined
by Relé method and using Lagrange equation for all
system comprise haulage cable. From this fact, the relation
U (z) must be used, where cable bit static deformation is
taken in consideration.

X1

;’(2(11 - z) (12)

U=x,+

Where, 1 A relative displacement of cable section during
localized elastic deformations to a distance z from point A.

Therefore, the kinetic energy of the system is
determined as follows:

.2
_my X
2

-2
m,.X 13
Ect M2 (13)

+ECC

The derived of the Eq. 12 gives:

Xl_

U=+ 0" %2y _z)

In this case, the expression of cable bit kinetic energy 1s
given by the following formula:
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L 1 z

1 |
Eoo= 25 [ gz e ﬂxz+¥(h_z)
1y 1y 1 (14
-2 TR -2

Thus, the system total kinetic energy is:

_ m1X12
2

mz.X§+& XXX, + X5 (15)
2 3 2

Eor +

The potential energy variation of the considered cable bit
according to displacements and deformations is given as
follows:

2
Ce(x— %2 +8c1)”  CSer
2 2

Ep =

Where, S, Static deformations before transient state.

Having the Xinetic and potential energies
expressions, it is possible to determine the Lagrange
equation parameters having the following form:

5]

For each coordinate, x, and x,, the system equation of the
following form is obtained:

IE
X,

9Eer
ax;

X

1

i

[ml + ;mcj)"(l + émc}"(z +C (X - X)) =H;
(16)

1 Ve 1 -
[m2+§mc]X2+gchl+Cc(X2Xl)—O

If the system imitial conditions are considered to be null,
the expressions (16), under the operational form can be
written as follows:

[ml + %mc ]szl(P) + émcpzxz (p)+
Ce[X(p) ~ Xa(p)] = K (p):
P%+%meXﬂw+%mw%%@H

Ce[Xa2(p) =X (p)] = 0.

where:
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6
X(p)= 3

mlp2 +C. + _m;p

2
xl(p>(cc—m°6p }
Xa(p) = 7

mzp2 +C, +%

2
m
F1+X2<p)(cc —p}

. 1 1
if m} :m1+§mc andml2 =1, +§mc

therefore, the equation below is obtained:

R(mp®+ C.)

X p)= (17)

2 1 2% 2, 2

p {mlml_%mc](p +U)c2)

22
mijp” +C

X3 (p) = Ty S, 0®

p {mlmz—%ch(P +ODcl)

The equation below 1s deduced:

-1 -1
C, 1+0y, + 04,

= 19)
m -, 1 -1, 1 1 (
¢ [aul + 3}[&121 + 3} "3

From Eq. (17) the equation below 1s obtained:

Oz =

z 2m, +m 2
K t—+7( 2 ) x

x(ty=— 2 4myC,

1,

‘ (1—cosagat)

(20)

Recalling that:
2
%CL d 21 2Ciz(l—cosmt)
P 2 pPTtmt

2 2
Ce _ag _ Ba ; Therefore, the expression (19) becomes:

A

Table 1: The obtained values of Eq. 23
oy 0,25 1,0 2 4 16 ca
Ye 0.996 0.985 0.975 0.96 0.93 0.906

127

0,3
s :%(1+aﬁl + Otl_zl) .
(21)
0,5
otord + (ogf + ot )+
3 12
On the other hand:
0,3 0,5 29
@ = Bey (0 + 00z + 041045 ) (Ag) (22)

The ratio of the two frequencies w, and w,, is:

0,5
_®y _ 1 Oyp-Ofpy (23)
= =| w1+ (0 + Ty )+
Te D ( { 3( TRaTY 12 D

Fora,, = a,, = 0,25.... o, the obtained values are illustrated
in the Table 1 below:

Er : Power transformer electromotive force;

I, Current in the induced circuit;

w,, B, : Rotational speed and electromotive force;

R, : Equivalent resistance of rotor circuit;

T,  : Motor electromagnetic time constant;

R : Drum ray of rolling up cable;

i Speed reducing gear transmission ratio;

I . Inertia of rotating masses des masses reduced to
the motor shaft;

MC : Mechanical part of the system

RESULTS AND DISCUSSION

The obtained results presented in the above Table
will lead to the method giving the more accurate results.
In the case where &, = ¢, = < for any value of the mass
m,, this will correspond to the absence of m; and m,
masses, which means that m, = m;, = 0 consequently,
cable bit has to be considered as a simple free
elastic rod to its extremities. For such system the main
frequency 1s equal to

corresponding to w, frequency, obtamed by the first
method. The value of w,, with the same conditions, is
determined by 2p. v 3/ = 1,103 w,, that is w, 10% supericr
to w,. This rise will condition an increase in the
difference between forces followed by an mcrease in
the factors ¢, et ¢y,
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Fig. 3: Motor functional and power diagram
CONCLUSION

It can be concluded that, the mathematical model
obtained from the limited values method (first method) 1s
more accurate 1n describing the evolution of real
processes in the system having elastic property.

This method is well adapted to the analysis of
processes of electromechanical systems with complicated
structures and containing elements having certain
elasticity. This will favors vibration dispersions and from
this, the deformations acting on the mstallation waill
disappear.
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Functional diagram of the power part of driving
motor a) with elastic elements and b) absolutely rigid are

llustrated 1n Fig. 3.
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