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Abstract: In the physical world, motion segmentation of images sequences 1s based on visual motion
perception. This does not depend on prior interpretation or recognition of shape and form. However, it does
depend on motion information (spatiotemporal object-environment relations). Tt is generally recognized that
the analysis of moving objects proceeds n four stages: The first 13 the detection of variations in intensity over
time n the enviromment. The second is the segmentation of moving areas and objects masks building. The third
is the estimation of motion parameters. The fourth one is the 3D motion interpretation. In the study, we are
dealing with detection and region-based segmentation methods. These methods may easily extend to estimate
motion parameters. Here we are mainly concerned with comparing studies using determinist and stochastic
modelling (images difference, maximum likelihood detector and Markov random field model) to detect the

moving objects masks.
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PROBLEM POSITION

The problem here is to discriminate starting from the
signal mtensity obtained in each pixel of the images
sequence, the pixels where a change of this last occurred
and to be able to rebuild all the area of the changes due to
the same movement, who can be homogeneous or not?

DETECTION BY IMAGES
DIFFERENCE

To be able to detect a temporal change of the
function intensity T at the pixel (p,t), we must be interested
m the temporal difference (FD: Frames Difference)
between two images at time t and t-dt where dt is the
temporal sampling step:

YpFD(p, t)=1(p,t) = I(p,t —dt) 1)

We can detect the changes as moving areas, generally
called the masques by a simple thresholding (Jam ef al.,
1979, Wiklund and Grunlund, 1987, Lalande, 1990;
Bouthemy and Odobez, 1995; Bouden, 1995, Alice, 1997,
Thomas, 2005; Qiang ef al., 2005) defmed by:

1 11FD > A
Vp CT(P)= si|FD(p)| (2)
ailleurs

With 4 is a fixed threshold follows the thresholding

procedure.
MAXIMUM LIKELTHOOD DETECTION

They are founded on the tests of probability
developed by Yakimovsky (1976) for the segmentation of
fixed images; they were adapted to the temporal
changes detection by Tain and Tian (1988) and were also
largely developed in (Lalande, 1990, Bouthemy and
Odobez, 1995, Bouden, 1995; Alice and Franck, 1997,
Thomas, 2005; Qiang et al., 2005).

A, and A, are two
respectively n (pO.t) (pixel (10, jO) of the mnage t of the
sequence) and (p0, t-dt) (pixel (10, ;0) of the image t-dt of
the sequence), the Likelihood test probability takes into
account the following assumptions:

same windows centred

1/ HO: The two windows have not the same distributions
of T ==> manifestation of non temporal change (the
stationary situation of T).

Corresponding Author: T. Bouden, Department of Engineering, Automatic Faculty, NDT Laboratory,
BP=98 Ouled Aissa Jijel University, 18000, Algeria



Astan J. Mform. Tech., 6(3): 296-302, 2007

2/ H1: The two windows have the same distributions
of I ==> manifestation of temporal change.

For each assumption a likelihood function is
associated. The report/ratio as of these functions,
maximized and then compared with a threshold; allows to
detect or not, a temporal change. The distribution of the
function I can be modelled by several models:

Constant area modelling: For each area, the intensity is
supposed to follow the following model:
I..= Const{p) +noise

3)

The noize iz supposed to be Gaussian and centred
Nip,o.). The Likelihood function iz given by:

@)

37 @p,)-py

I,=
( 2o

1 H
)2 exp—
7o,

I(p,): The observed intensity at the pixel p,.

We conszider two windows A, and A, with size
N = nxn, respectively centred at (py, t) and (p,, t+dt). The
two paszed hypotheses can be written as:

1/ H,: All pixels of A, and A,, have the same distribution
{same parameters N(J1,,0.9)).

2/ H;: Pixels of A, have the distribution N{u,,5,%; and
pixels of A,, have the distribution N(p,,0/%); with p; = ..
The decision here applies only to the centred pixel p;; the
likelihood ratio is so given by:

Yar Al
K exp- <= R K exp- < 1H
R _ 1 Xp 203 2 Xp 253
=
A UAT 5
Kuexp—iz L %)

2G
With: I,=(@I(p)-p,)’

o

This expression can be simplified by considering the
equality of the variances (o, =0,%=c). After development
and simplification of calculations (Lalande, 1990;
Bouthemy and Odobez, 1995; Bouden, 1995; Alice and
Franck, 1997; Fulvio, 2001; Thomas, 2005; Qiang et al.,
2005) we will lead to the criterion of detection according
to:

SiH,
SiH,

Y p CT(p) =(1) (6)

This mode of detection is not very sensitive to the
noise and remains from the point of view time real, easy
with the establishment.

297

Linear modelling: For each area, the intensity varies
according to the polynomial law of order 1 (i.e.,: bilinear):

L = &1 + o + Gt +noise

A;and A, Spatial variations.

(7)

Thiz modelling authorizes a continuous variation of the
intensity function in a given area. We will proceed in the
same way that previously, we have obtfained the same
Eq. 4 and 5. The sensitivity of this detector is related to
the complexity of the model. The results showed, that this
method offers a good compromise (sensitivity to the noise
and cost of calculation).

MARKOV RANDOM FIELD DETECTION

In this part, we will point out the broad oufline of
the Markov Random Field (RMF) modelling used for
motion detection. This modelling iz associated to the
optimization algorithms which remain expensive in
times  computing in unquestionable applications
(Lalande, 1990; Bouthemy and Odobez, 1995;
Bouden, 1995; Alice and Franck, 1997; Fulvio, 2001;
Thomas, 2005; Qiang ef al., 2005). The observations are
the differences between two consecutive frames (Fig. 1):

o(i,j,t) = |I(p,t)-I(p,t-dt) | (8)

The labels take their values in {a,b}=4, indicate the
absence or the presence of movement of each site S

{pixels p at the moment t):
Instantt + dt

Instant t - dt

Fig. 1: Realization of the relation between E and O
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a = Pixel.(p,t) € moving area 9
e(p.t)= . . )
b = Pixel.(p,t) € Static area
We consider here a frame S at time t with the site s there
(3 (s = (p, t)); we note now:

= {E(s), s¢3}: Labels Field at time t.

= e : Particular realisation of E.

{0(s), s£5t:Observations field at time t.
= o Particular realisation of O.

= {a, b}: Labels set.

oo oodd
Il

The relation between the observations and labels,
takes the following generic form:

o=1Y(e)+n (10)

I :derived from I(p, t) at t.

0 sie —e_, =b. object statique
ml>0sie =e,_, =a.objetmobile (11)

m2>>mlsie, #e,_, . (ransition

yrie,,e, )=

n: Gaussian noise of zero mean and variance ¢° constant
for the image.
T is a statiotemporal neighborring for s and C.

The set of all the cliques m S associated to 1 are
llustrated in the Fig. 2:

C=Cy+C.

With:
Cs : Setof spatial cliques (08 neighbours pixels).
C.: © Set of temporal cliques (02 per pixel).

The neighbour pixel r(i+v, j+w, t+dt) 1, r#s and the
values of (v, w, dt) are in {-1, 0, +1}.

In this modelling, we suppose that the labels field is
a Markov field associated to the neighbourmg system 1.
Therefore, using Hammersley and Chfford theorem
(Lalande, 1990; Bouthemy and Odobez, 1995; Bouden,
1995:; Alice and Franck, 1997; Fulvio, 2001; Thomas, 2005;
Qiang et al., 2005) 1t follows a Gibbs distribution:

P(E:e):%exp {—Um (e)} (12)

Z : Normalisation constante.

U,le) : Energy spatiotemporal function, ensures the
space-time homogeneity of the masks and
eliminates the isolated pixels due to the noise:

I s: pixel central

< levoisinr ol'
m—<
Une clique ¢ = (s,r)

/\;

//

Fig. 2: Neighbouring system

U, (&=, Vie.e)t Y Vie.e) (13)
ceC, ceCy
With:
—cont.b ..Si.e =e
Ve (ee)= A, a4)
+cont.b,.Si.e, #e
Cont = 2 Vertical spatial cliques.
Cont = 1 Diagonal spatial cliques.
For a simple temporal passed clique:
-b_.Si.e =e
V,(e,e)=y ~ 7 (15)
+h,.Sie #e
For a simple temporal future clique:
—-b,.8i.e =¢
Vo(e,e)=1 "~ 7 (16)
+b,.8l.e, #£e

As for the energy of adequacy between the observations
and the labels, which plays the part of a constraint of
smoothing of the fields of labels, is defined by:

L_‘p(et’ tl] +[O ‘\U(eu 0.1] )(17)

se8
The global energy is given by:

U=1_(e)+ U, (e,0) (18)

To solve our problem; we use the criterion of
the Maximum A Priori (MAP) drift of the theorem
of Bayes (11-15). From Eq. 12,
have:

18 we can easily

Max P[E = e/O=0] = MaxP P[E =e,0 = 0]

= MinU.
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Fig. 3: Optunization algorithms

To find the minimum of total energy, we use the
relaxation algorithms which are deterministic such as ICM
(Tterated Conditional modes) or stochastic such as
simulated amnealing (Lalande, 1990; Bouthemy and
Odobez, 1995; Bouden, 1995; Alice and Franck, 1997;
Fulvio, 2001; Thomas, 2005; Qiang et af., 2005).

Determinist relaxation algorithm RD: Consist in seeking
the configurations sites and labels (s, ) corresponding to
optimal energies

(Find (s, )? = MinUl(e,0)).

These algorithms (RD) can be trapped by local mimmas.
Their unfolding 1s as follows (ICM):

To choose a site s.
Calculation of U for any E possible of site s;
To retain the label e which leads to the weakest

energy?

Stochastic relaxation algorithm RS: The stochastic
methods (R3) of simulated type reheated are combinations
of sampling according to the distribution Gibbs and a
downward procedure in temperature. The factor of
temperature 15 ntroduced into the calculation of the
function energy. Theoretically the algorithm converges
towards a configuration of minimal energy if the
temperature decrease. We will describe below the
algorithim of Metropolis, used to study balance at low
temperature of the very great systems:
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At the iteration k: e, = e.
At the iteration k+1: choose e’ near e.
AU =TU(e")-Ule).
if AU<0 alors e, = ¢€’.
Selseif e,,, = &” with probabilité e*".
e,.; = ¢ with probabilité 1-e*".
Endif.
End.

La figure ci-dessous résume 1’algorithme d’optimisation
utilisé pour la détection d’objets mobiles.

The Fig. 3 summarizes the algorithm of optimization
used for the motion detection (Lalande, 1990; Bouthemy
and Odobez 1995; Bouden, 1995; Alice and Franck, 1997
Fulvio, 2001; Thomas, 2005; Qiang et af., 2005).

RESULTS

We will present some obtained results by the
various studied methods applied to the following
sequences images: Sequence aqua, 1s a natural sequence
of 4 images. And on the synthetic cubic sequence of
12 images.

The frame difference method is the better in the
computing time and gives noisy masks of moving area
(Lalande, 1990; Bouden, 1995; Alice and Franck, 1997).
But in the case of synthetic sequences without noise
it’s the better one (Fig. 4). The other methods (Bouden,
1995) take enough computing time and give the best and
higher compromise mask quality and noise sensitivity
and time computing (Fig. 4 and 5). These studied methods
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(a) 1th frame of synthetic sequence

(b) 7th frame of synthetic sequence

(c) Frame difference detection with ? =10

Fig. 4: Results for the Synthetic cubic sequence
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{d) Likelihood detection constant model with ?=10

(e) Likelihood detection linear model with ?=75

Fl
.

P R ' ‘,L--;".‘

(f) Markov model with (RD) and parameters values:
(m2=2m1=20, by=30,b,= 20 Et b=10)
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{d) Markov model with (RD) and param eters values:
(m2=2m1=20, be=30b;=20 Et t=10)

tural .
(&) natural aqua sequence (&) Markov model with (B3 and parameters values:

(m2=2m 1=20, be=30b, = 20 Et b=10)

Fig. 5: Results for the natural aqua sequence
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have the network realization with hypothesises on the
scene and its conditions lighting.

CONCLUSION

In general, the use of these various methods depends
on the type of application considered. The limitation of
the two last studied methods 1s the time computing. The
likelihood detecion and Markov model detection
methods, realize the best compromise (sensitivity to the
noise and cost of calculation). But if the notion of time 1s
of primary importance and that the quality of the
segmentation is not interesting a simple frames difference
can be carried out.
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