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Extraction of Structural Shape of Low DOF Image Using Morphological Operators
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Abstract: Automatic image segmentation and shape extraction is one of the most Challenging problems in
computer vision. This study presents a novel algorithm to partition an image with low Depth-of-Field (DOF) into
focused Object-of-Tnterest (OOT) and extracts the structural shape components using a generalized discrete
morphological skeleton transform. The proposed segmentation algorithm unfolds mto three steps. In the first
step, we transform the low DOF 1mage into an appropriate feature space, i which the spatial distribution of the
high-frequency components is represented. This is conducted by computing Higher Order Statistics (HOS) for
all pixels in the low-DOF image. Next, the obtained feature space, which is called HOS map in this study, is
simplified by removing small dark holes and bright patches using a morphological filter by reconstruction.
Finally, the OOI 1s extracted by applying region merging to the simplified image and by thresholding. Unlike
the previous methods that rely on sharp details of OOT only, the proposed algorithm complements the limitation
of them by using morphological filters, which also allows perfect preservation of the contour information. For
the morphological shape representation algorithms, a generalized discrete morphological skelton transform is
used which uses eight structuring elements to generate skeleton subsets will be adjacent to each other. Each
skeletal point will represent a shape part that is in general an octagon with four pairs of parallel opposing sides.
The number of representative points needed to represent a given shape is significantly lower than that in the
standard skeleton transform. A collection of shape components needed to build a structural representation 1s
easily derived from the generalized skeleton transform. Each shape component covers a significant area of the
given shape and severe overlapping is avoided. The given shape can also be accurately approximated using
a small number of shape components.
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INTRODUCTION

In this study, our focus is to build an efficient
structural shape representation that allows exact as well
as approximate reconstructions of the input shapes.
Therefore, we are following a structural and algebraic
approach to shape representation. In the Morphological
Skeleton Transform(MST), a given shape 1s represented
as a union of all maximal disks contained in the shape
(Gonzale and Wang et al, 1992). There is much
overlapping among the maximal disks. The Morphological
Shape Decomposition (MSD) 15 another important
morphological shape representation scheme (Wang et al.,
2001) in which a given shape is represented as a union
of certain disks contained in the shape. The overlapping
among representative disks of different sizes 13 eliminated
new morphological shape representation algorithm that
can be viewed as a compromise between the MST and the

MSD was recently proposed (Best and Jain, 1988; Lifshitz
and Pizer, 1990). In this scheme, overlapping among
representative disks of different sizes s allowed, but
severe overlapping amoeng such disks 1s avoided. We can
call this algorithm Overlapped Morphological Shape
Decomposition (OMSD). The advantages of these basic
algorithms mclude that they have simple and well-defined
mathematical characterizations and they are easy and
efficient to implement. There is a common problem shared
by all 3 algorithms. Tn general, there is much overlapping
among representative disks of the same size. The MST 1s
not typically considered a shape decomposition algorithm
because of the heavy overlapping among the
representative disks. For the MSD and OMSD, there is a
simple scheme for grouping representative disks mto
shape components.

In this study, we will develop a generalized discrete
skeleton transform. In the new algorithm, the size of a
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typical skeleton subset is much smaller. In our new
algorithm, each shape element, which i1s a shape part
represented by a representative point, is in general an
octagon with four pairs of parallel opposing sides. The
two sides in each opposing pair also have the same size.
We will also develop a new shape decomposition
algorithm based on the new skeleton transform. The use
of octagons as shape components also provides some
flexability in describing natural shape parts. Therefore, an
accurate approximation of an mput shape can often be
constructed by using only a very small number of major
shape components. The algorithm consists of the
following steps:

*  Feature space transformation using HOS

*  HOS map simplification by Morphological filters
+  Region Merging And Adaptive Thresholding

+  Extraction of structural shape components

Feature space transformation using HOS: The first step
toward segmentation consists in transforming the input
low-DOF image mto an appropriate feature space. The
choice of the feature space depends on the applications
that the algorithm is aimed at. For instance, the feature
space may represent the set of wavelet coefficients or
local varance mmage field (Won et af., 2002).

In this project, HOS (Gelle, 1997) for feature space
transformation can be computed. HOS are well suited to
solving detection and classification problems because
they can suppress Gaussian noise and preserve some of
the non-Gaussian information in this project, the fourth-
order moments are calculated for all pixels n the
mmage.The fourth-order moment at (x, y) i1s defined as
follows:

00y - 3 asn-nE )’
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where 1(x,y) is a set of neighboring pixels centering
at(x,y), m(x,y) is the sample mean of I(x,y)(i.e., (x,y) =
(/M) Z(S‘UH(W Iis,t)) and N, is a size of 1. Since the
dynamic range of the fourth-order moment values is
extremely large, the value for each pixel 1s down scaled
and limited by 255 such that each pixel takes a value from
[0, 255]. The outcome image is called a HOS map. Ata
pixel(x,y)ER, a component of the HOS map, HOS(x,y), is
defined as follows:

2 (4)
HOS(X,y)—min[ZSS,wl

DSF

Where DSF denotes down scaling factor. For a
variety of test images, it is observed that 100 are

appropriate for DSF. By applying above equation for all
pixels, we have a HOS map, O= {HOS(x, y)i(%, y) €R}..
Comparing it to a local variance map, it can be observe
that the HOS map yields denser and higher values in the
focused areas, suppressing noise in the defocused
regions. The strong edges of focused region are

calculated by snake algorithm.

HOS map simplification by morphological filtering by
reconstruction: In the previous study, feature space
transformation was addressed such that more adequate
feature space is exploited for segmentation. The HOS map
transformed from the low-DOF image has gray levels
ranging from O to 255, where high values mdicate the
existence of high-frequency components (i.e., possibly
focused regions). However, there could be some focused
smooth regions, which may not be easily detected by
HOS transformation. Similarly, defocused texture regions
may generate noise. Therefore, a proper tool for HOS map
simplification is needed to remove these errors, appearing
in the form of small dark and bright patches in focused
and defocused regions, respectively.

The elementary geodesic erosion £"(0,0.) of size
one of the original image O with respect to the reference
image ORis defined as

S“)(O,OR)(X,y):max{EB (0)(%,¥).04 (X,y)}

and the geodesic dilation d 87(0,03) of size one of the
original image Oy with respect to the reference image OR
is defined as

30 (O,OR)(X,y):min{BB (O)(%,¥).04 (x,y)}

Thus, the geodesic dilation d 8“(0,0,) dilates the
image O using the classical dilation operator 8,{O).As we
know, dilated gray values are greater or equal to the
original values in O. However, geodesic dilation limits
these to the corresponding gray values of O . The choice
of the reference image will be discussed shortly.

The erosions and dilations of arbitrary size are
obtained by iterating the elementary versions €{0,0,)
and 8“(0,0,) accordingly. For example, the geodesic
erosion (dilation) of infinite size, which is so-called
reconstruction by erosion (by dilation), is given by the
following.

s Reconstruction by erosion:

¢0,0,)=67 (0.0 )=, £, £ (0.0,)

s Reconstruction by dilation:
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FN0,0,)=05(0,0,) =8" 8Y,...,6" (0,0,).

Notice that ®(0,0;) and 7v"(0,0,) will reach stability
after a certain number of iterations.

In the proposed system, morphological closing-
opening by reconstruction, which 1s morphological
closing by reconstruction followed by morphological
opening by reconstruction are employed. The strength of
the morphological closing-opening by reconstruction
filter is that it fills small dark holes and removes small
bright isolated patches, whereas perfectly preserving
other components and their contours. Obviously, the size
of removed components depends on the size of the
structuring element. The focused smooth regions can be
well covered whereas the scattered small regions in the
background can be removed by the filter.

Region merging and adaptive thresholding: In typical
morphological segmentation techniques, the simplification
by morphological filters is followed by marker extraction
and watershed algorithm to partition an image or scene
into homogeneous regions in terms of intensity. Unlike
the intensity-based
segmentation schemes, the task of the low-DOF image
segmentation is to extract focused region (i.e., OODfrom
the image rather than partitioning the image. The decision

abovementioned  conventional

process consists of two steps: Region merging and final
decision by thresholding.

Region merging: Region merging is started based on
seed regions, which can be regarded as definitely focused
regions of OOL First, every flat zone is treated as a region
regardless of its size, which means even one pixel zone
can become a region. Then, we define regions having the
highest value in the simplified HOS map as seced regions
and these sced regions become initial OOI [see white
areas in Fig. 1c and a].

We also define regions having values less than or
equal to a predefined value T, (T <v, )as definitely
defocused regions. Those regions are labeled as initial
OOI°Then, the labeled as
uncertainty regions with pixel values (T;,v,). A pictorial
example is shown in Fig. 1a, where the initial OOI and OOI

remaining regions are

are denoted by white and black regions, respectively,
whereas the dashed regions R, R, and Rkindicate
uncertainty regions. Our goal in this region merging
process is to assign uncertainty regions to either OOI or
OOI°.Such an assignment is iteratively conducted by
considering bordering relationship between uncertainty
region and current OOl and OOI, (ie.,, OOI at the
iteration). Specifically, we develop an algorithm that
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Fig. 1: Evolution of OOI by the proposed region merging.
(a) Initial OOI and three uncertain regions with
pixel values (T};v,) in the simplified HOS map. (b)
R is merged into OOL (¢) Final OOL after R is
merged into OOI

assigns an uncertainty region R,i, the n"iteration to
either OOI or OOL’ by computing normalized overlapped
boundary (nob).

The normalized overlapped boundary can be modeled
as a continuous random variable nob, taking values of
nob in [0, 1]. If is larger than a threshold value, the region
is merged to OOLThen, the partition is updated, yielding
an increasing sequence of OOI which eventually
converges to OOL A reasonable starting point for finding
the threshold value, which is denoted by, is to use the
likelihood ratio test as follows

Assigv R; to 00I if P(00I| nob, )
>P(OOI° | nobi), other wise assign to 00I°

where OOl represents the class for the OOI with prior
probability P(OOI) and OOI° denotes the class for the
non-OOI  with  prior  probability  P(OOI%=1-
P(OOI).P(OOI/nobi). and P(OOI" / nobi) represent the a
posteriori conditional probabilities that correspond to H1
and HO, respectively. If we apply Bayes theorem on both
sides of the expression and rearrange terms as follows:

p(nob, | OOD) H, P(OOL)
p(nob, |OOI*) < P(OOI)
H

0

The left-hand ratio is known as the likelihood ratio
and the entire equation is often referred to as the
likelihood ratio test. Since the test is based on choosing
the region class with maximum a posteriori probability, the
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decision criterion is called the Maximum A Posteriori
(MAP) criterion. Tt is also called the minimum error
criterion, since on the average; this criterion yields the
minimum number of meorrect decisions. Since the OOI
and background may have any size and shape, we assume
equal priors (P(OOD)= P(OOT") and thus, the expression
reduces to the Maximum Likelihood (ML) criterion

p(nob, | OOI) & 1
p(nob, | COI") ﬁu '

We propose to model the class-conditional
probability density functions by exponential distributions

p(nob, | OOI*)=2,, " u(nob, )
p(nob, | OOD)=A,, —**"™™) uinob, )

where u(x) denotes the step function. We believe that
these distributions are suited to the real data because
p(nob; / OOT) would have high values around nob, =1 and
rapidly decay as nob—0, whereas p(nob/OOIF)would
have high values around nob; =0 and rapidly decay as
nob,—1. Finally, optimal threshold for can be obtained as

2 In %
HObiz:l-IlU —2+ : :Tnub
R

The parameters A,and A,can be estimated from the
actual data. However, if we assume symmetry between the
exponential distributions (A,=4,), the expression for the
optimal threshold can be approximated and simplified as

Tnnh: : + : ==
Aty A+A, 2

Hence, if nob, is larger than T,;, R, is merged to OOT
and OOI is updated. This process is iterated until no
merging occurs. A pictorial illustration 1s provided in Fig.
1. In Fig. 1a, nob, 1s greater than T, thus Rimerges into
00T, whereas Rk does not since nobk is less than T,,,. In
the next iteration, as shown in Fig. 1b, R; merges into OOI
since nob> T, In order to expedite the process, very
small regions can be merged to the neighbor region with
nearest value in advance.

Final decision: In the preceding subsection, the focused
regions (1.e., OOI) are updated by region merging. In other
words, an uncertainty region whose nob is larger than

T, has been incorporated into OOI. Now, the final
decision becomes to extract OOT from the final Partition P.
It 1s easily done by extracting regions having the highest
value. For instance, m Fig. 1(c), OOI will be extracted
whereas Rk will not be decided as OOT since it has a value
than less than that of OOT.

Extraction of structural shape components: In traditional
skeleton transform shape will be represented as a union of
maximal line segments since it uses single line segment as
structuring element, In our algorithm, we will use multiple
structuring elements that are line segments with different
orientations. Another strategy used by our algorithm is to
apply skeleton transform steps with one structuring
element to skeleton subsets obtained using other
structuring elements.

New algorithm: In our algorithm, we use eight basic
structuring elements BB, ... B,as shown in Fig. 2. In fact
B ., B.. B, and B.are translated versions of B ;. B,, B, and
B., respectively. We use all eight structuring elements in
order for our final shape elements to be as symmetric as
possible. In our new algorithm, we obtain the skeleton
subsets by repeatedly applying erosion operations using
these eight structuring elements in the following order:
B.B,...B. B, B,.B,,B.,;B.,. That is, these eight
structuring elements will be applied in a cyclic sequence.
A given shape image 1s a set of points. Our algorithm can
be viewed as a recursive process of applying erosion
operations to repeatedly reduce a set into two smaller
sets.For a nonempty image X that 1s not a set of isolated
points, let

Y, (X) =X 0 B0
Z0 (X)=X \(Y, ()@ BO)=X\(X 0 B,)

In general, ¥ is reduced to two smaller sets YO (X)
and Z0 (X) by this erosion step the final shape elements
represented by the points in the skeletons subsets are
maximal shape elements in the sense that they cannot be
expanded any further following the sequence of
expansion steps used in the algorithm. The union of all
the final shape elements 1s the given shape X. Each final
shape element 15 mn general an octagon with four pairs of

LY} - CL Y] - Iy - LTl -

Fig. 2: Eight basic structuring elements
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Fig. 3: Shape elements generated using basic structuring
elements

The two sides m each

opposing pair also have the same length. Some of these

parallel opposing  sides.
octagons are shown in Fig. 3. Figure 3a-h show following
eight shape elements: B, B;#B,, By B,#B,.. BeB & ...
® B,. There is a simple relationship between the shape of
a shape element and the numbers of different structuring
elements used. The number of B, or B, used to construct
a shape element equals the size of the shape element’s
two horizental sides. The number of B,or Bsused 1s same
as the size of two vertical sides. The numbers of other two
pairs of structuring elements used determine the sizes of
two pairs of diagonal sides.

The number of B; or B, used to construct a shape
element equals the size of the shape element equals the
size of shape elements two horizontal sides. The number
of B, or B; used is same as the size of two vertical sides.
The numbers of other two pairs of structuring elements
used determine the sizes of two pairs of diagonal sides.

In our generalized skeleton algorithm, a given shape
15 represented as a umon of all generalized maximal
“disks” contained in the shape. We eliminated the heavy
overlapping among representative shape elements of the
same shape and size.

However, there can still be much overlapping
among representative shape elements of different shapes
and sizes. The generalized skeleton transform males the
derivation of this shape decomposition and the selections
of its shape components very easy. In this new algorithm,
the generalized skeleton transform allows us to easily
select a single pomnt to represent a shape component
covering anew area in a given shape.

CONCLUSION

This algorithm separates the pixels in the low-DOF
images into two regions based on their higher order
statistics. To thus
transformed into an appropriate feature space, which was
called HOS map in this study. Morphological filter by

end, the low-DOF image was
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reconstruction was applied to simplify the HOS map,
followed by region-merging technique and thresholding
By employing the powerful
morphological tool for simplification, the proposed

for final decision.
scheme performs well even for focused smooth regions as
their boundaries

components (1.e., edges).Also, it shows its robustness to

far as contain  high frequency
scattered sharp areas in the background thanks to the
powerful morphological simplification and the following
region merging. Nonetheless, if the focused smooth
region is too large, the proposed algorithm may need to
incorporate some semantic or human knowledge. This
algorithm can also be described as a recursive process of
applying erosion operations to repeatedly reduce a set
of pomts into smaller subsets using eight basic
structuring elements. This is a natural generalization of
the traditional skeleton transform. Each skeletal point from
the new skeleton transform represents a shape element
that 13 m general an octagon with four pairs of parallel
opposing sides. Each pair of the opposing sides also has
the same size.According to the experiments, the number
of skeletal points used to represent a given shape is
significantly lower than those used by the traditional
skeleton transform, the MSD and the OMSD. The
generalized skeleton transform easily leads to the
construction of a new shape decomposition scheme, in
which, a given shape i1s decomposed mto a collection of
modestly overlapping shape components, each of which
15 an octagon determined by the generalized skeleton
transform. The main advantage of the new shape
decomposition algorithm 15 that each shape component 1s
represented by a single center point and the shape of a
shape component is always primitive and explicitly
specified usmg four mtegers. This easy
comparison between two shape components. In future,

allows

this algorithm can be developed for object recogmtion
from a low DOF image.

REFERENCES

Besl, P.J. and R.C. Jain, 1988. Segmentation through
variable-order surface fitting. TEEE. Trans. Pattern
Anal. Mach. Intell. PAMO., 10: 167-192.

D. and P. Meer, 1997. Robust

of feature spaces: Color image
segmentation, In: Proc. IEEE. Conf. Computer Vision
and Pattern Recognition, San Juaan, Puerto Rico,
pp: 750-755.

Gonzalez, R.G. and R.E. Woods, 1992. Digital Tmage
Processing. Reading, MA: Addison-Wesley.

Comaniciu,
analysis



Asian J. Inform. Tech., 6 (3): 303-308, 2007

Lifshitz, .M. and S.M. Pizer, 1990. A multiresolution
hierarchical approach to image segmentation based
on mtensity extrema, IEEE. Trans. Pattern Anal.
Mach. Intell., 12: 529-540.

Tsai, D.M. and H.J. Wang, 1998. Segmenting focused
onjects in complex visual images, Pattern Recognition
Lett., 19: 925-949,

Won, C.5., K. Pyun and RM. Gray, 2002. Automatic
object segmentation in images with low depth of field,
i Proc. Int. Conf. Image Processing, Rochester, NY,
TIT: 805-8O8.

Wang, I.Z., I. Li, RM. Gray and G. wiederhold, 2001.
Unsupervised multiresolution segmentation for
images with low depth of field, IEEE. Trans. Pattern
Anal. Mach. Intell., 23: 85-90.

Yimand, C. and A.C. Bovik, 1998. Multiresolution 3-D
range segmentation using focused cues, IEEE. Trans.
Image Process., 7: 1283-1299.

Ye, 7. and C.C. Lu, 2002, Unsupervised multiscale focused
objects detection using hidden Markov tree, in Proc.
Int. Conf. Computer Vision, Pattern Recognition and
Image Processing, Durham, NC., pp: 812-815.

308



