MedWe]l Asian Journal of Information Technology 6 (3): 309-313, 2007

Onllne

© Medwell Journals, 2007

Parallel Simulation of Manufacturing Systems

'Abdelhak Boubetra, 'Nacereddine Mouhoub and *Hocine Belouadah
"University of Bordj Bou Arreridj, Algeria
*University of Msila, Algeria

Abstract: Given the widespread of manufacturing systems, it is important to understand their behavior through
simulation. The proposed simulation approach views this type of systems through an analogy with ‘the
producer-consumer’ standard computer problem and its advantage to enable computer parallelism to be
achieved in order to optimize computationnel time to simulate such systems.

Key words: Manufacturing system, component, optimization, event, simulation, parallelism

INTRODUCTION

Manufacturing system simulation utilises
computational models that allow the user to study
manufacturing processes without the requirement to
invest in a real implementation. These systems are
composed of objects or entities (e.g., machines) having
attributes or properties. The values of the attributes give
the state of an entity and the states of all the entities give
the state of the system. The states change due to
activities of the entities of the system.

In manufacturing systems, changes of state occur at
discrete times and these are called events. Such systems
are usually studied at these times only. Hence the
manufacturing system is analyzed and studied in terms of
events and actions at that events. These last can be
classified either time-driven ‘occur at some known time in
the future” or conditional ‘occur when some conditions
are satisfied” immediately after a time- driven event.

In the phase of runmng the simulation, a simulation
executive 1s needed to manage, schedule actions and
execute them as they should be executed in the real world.
At this stage, we know that simulation is a computer time
consuming and it 1s interesting to have an optimized
manner to run the simulation in terms of computer
operations time. To deal with that, many time-parallel
simulation methods have been suggested for developing
massively parallel algorithms for specific smnulation
problems than a general approach for executing arbitrary
discrete event simulation.

A discrete event simulation model of a manufacturing
system can be usually considered as a number of
comnected compoenents (e.g., machines connected by part
routes) that receive and consume something in the input
to produce something in the output.

Hence, we investigate the sumulation of such
systems through an analogy with ‘the producer-
consumer’ computer problem.

The study s orgamzed as follows: First three 1s an
introduction to mamufacturing systems and the principles
of event simulation. Also there is an introduction to
parallel discrete event simulation. Then, we emphasis the
analogy between the ‘producer-consumer’ problem and
the behavior of a manufacturing system component (e.g.,
one machine) and we generalize that to networked
components (several connected machines). This analogy
15 explored to show how a sunulation program can be
transformed mto a set of parallel processes reflecting the
same simulation model of the system under study.
Algorithms specifications of such an analogy are
presented.

PARALLEL DISCRETE EVENT SIMULATION

Parallel Discrete Event Simulation (PDES) referes to
technologies that enable a sinulation program to execute
on a computing system that containing multiple
processors. Zeigler (1991) emphasised that parallel
computing systems are essential for the simulation-based
design of complex computer-based systems including
computer architectures. Fujimoto sees the principal
benefit from executing a simulation across multiple
computers 18 n the reduced execution time gamed by
subdividing a large sunulation computation into many
sub-computations and executing the sub-computations
concurrently. Tn other words, PDES techniques are used
to speed up the execution of a simulation. Several PDES
schemes (Ayani, 1993; Madisetti and Hardaker, 1993)
e.g., have been proposed in the recent years with a study
of their performance. For Fujimote and Hybinette (2001)

Corresponding Author: Abdelhak Boubetra, University of Bordj Bou Arreridj, Algeria

Asian J. Inform. Tech., 6 (3): 309-313, 2007

the parallel simulator consists of distinct components
called T.ogical Processes (LPs). Each L.P immitates and
models some behavior of the system under investigation.
The logical processes are executed on different
processors and interact via messages invoked by events.
The simulation advances as L.Ps exchange messages that
model events at discrete poimnts in time. In a special 1ssue
on parallel discrete event simulation, Lin (1993) dressed
many cases in which PDES is desired.

SIMULATION OF A SIMPLE
MANUFACTURING SYSTEM

Consider a system comprising many identical
machines which receive and process jobs (Fig. 1).

These jobs wait 1 a queue before processing. They
are treated following a certain discipline.

In this system, the entities are jobs and machines
having the following attributes:

Job attributes:
* Waiting to be processed,

Being processed,

End of processing.

Machine atiributes:
¢« Busy,
« Idle
When modeling this system we distigmsh the
following events:
* Amwval of jobs: A time-driven event.
Start_processing_job: A conditional event.
End of processing job: A time-driven event.

In a discrete event simulation, the computational
actions of these events are:

Arrival_of_jobs:

+ Calculate time of arrival,
Create job record,

Insert record in queue.

Start_ processing_ job:
¢ Select job and machine,

Calculate time of end processing,

Remove job record from queue.

310

- Mﬁles
Queue of jobs
SEE o4 o
\ D

Fig. 1. A simple manufacturing system

End_of processing_job:

» Annonce end of job,
* TFree machine.

On the other hand, when rumming simulation we are
interested 1n collecting data that serves as statistics to
understand the system behavior. In our example these
statistics can concern:

The job mformation the time of arrival and the time
of start processing determine the queuing time of a
job and the time of start processing and the time of
end processing determimne the processing time of a
job.

The machine utilisation is determined by busy time
or idle time either at times of start processing and
end processing during simulation or by analysis of
jobs records.

The queue size usually obtained by regular sampling
of queue at regular time intervals.

The computational actions of collecting statistics
data can be defined in a time-dirven event
(Statistics_event).

As we know, m the heart of any discrete simulation
system there 15 a calender contaimng a list of records of
time-driven events ordered on time of events and the
structure of the simulation program has the following
form:

Initialise;
While simulation continues do
Select earliest event from event list;
Perform actions of that event;
Enddo
Analyse and print results;

THE PRODUCER-CONSUMER PROBLEM

In the producer-consumer standard parallel
computing problem there are two processes that work in

parallel as follows as given in Fig. 2.

Asian J. Inform. Tech., 6 (3): 309-313, 2007

Fig. 2: The producer-consumer problem

Consumer: Removes jobs from queue and processes
Producer: Produces jobs which are queued

An analogy of the producer-consumer problem can
be applied to the manufacturing system of Fig. 1 as
illustrated in Fig. 2. Hence, the producer and consumer
processes will execute the following computational
actions as it follows:

Producer:

* Creates arriving jobs,

¢ Places jobs records on queue.
Consumer:

¢ Selects job and machine for processing,
* Removes job record from queue,

+ Arranges end of processing of job.

With this parrallel computational configuration we
can notice that the producer and consumer share the
following data:

*+ Queue of waiting jobs,
* The size of the queue (Q),
* The time of most recent arrival.

Beside that, the queue of the waiting jobs is ordered
i time of arrival (Tarr) where :
Tarr, = Tarr, = Tarr; =............ ...

This queue is examined by the consumer at time
(Tnow). This examination takes the following form:

If (Tnow > Tarr,) {time of most recent arrival } then
There may be additional jobs arriving until time
Tnow 1s reached

So Wait

Or

If (Tnow = Tarr,) then
Queue consists of all possible jobs which arrived
before Tnow.

A job r belongs to Queue of waiting jobs at time Tnow if
Tarr, = Tnow.

ceeeon= Tarr, (Fig. 3)

Fig. 3: Queue of waiting jobs

Hence:
* We isert jobs into queue according to time of
arrival.

* Weselect job according to queue discipline.

PARALLEL SIMULATION OF A SIMPLE
MANUFACTURING SYSTEM

To simulate the mamfacturing system of Fig. 1, we
suggest three parallel processes:

Producer procees:
Generates arrivals (arrival events)

Consumer process:
Start processing and end processing of jobs (start and
end processing events)

Statistics process:
Using records of processed jobs to obtain job statistics
and machine statistics (statistics events).

Here we notice that the queues and shared variables
are the waiting jobs with gl size, the processed jobs with
q 2 size and the time of most recent arrival.

The simulation program 1s written with three parallel
processes :producer, consumer and statistics permitting
any number of machines, any job discipline and any
machine discipline It takes the following structure:

REPEAT
Producer;
Consumer;
Statistics;
UNTIL simulation finishes

The simulation 15 terminated when a given number of
jobs had been processed or a given time period is elapsed.

The actions executed by the three parallel processes
are expressed in the following algorithms:

Producer process
If g < gmax then
Calculate time of arrival;
Create job record,
Place record at tail of queue;

Asian J. Inform. Tech., 6 (3): 309-313, 2007

Extemn End of
arivals processing
Fig. 4 A complex manufacturing system
J1
\ COHSUII]E['})[‘OCESS
Iz —»> ¥ Start ‘ [——1Processed
weight Jobs Processii, jobs
Node I Leave to
I Node K

Fig. 5: A manufacturing system node

Increment g
End
Else do nothing { wait }
Consummer process
{essentially event-driven simulation }
1f g > 0 then
if number of idle machines = 1 then
find earliest of arrival, endofprocessing
else
find earliest endofprocessing
(time 1sTnow)
end
else do nothing {wait}

arrival:
select an 1dle macthine;
start processing with job, machine at time Tnow {time
of arrival}

Endofprocessing:
machine becomes 1dle;
if number of idle machines = 1 and Tnow = time of
most recent arrival then
search queue to select job;
start processing with job, machine at time Tnow
{time of endofprocessing}

Start processing {given job, machine, start time}
Machine becomes busy,
Insert data in job record;
Place record in processed jobs queue;
Set up endofprocessing event;

312

Fig. 6: A manufacturing system example
Statistic process

If q processed jobs > 0 then
Fetch job record from queue;
Calculate statistics on job, machine;
Elsedo nothing {wait }

PARALLEL SIMULATION OF A COMPLEX
MANUFACTURING SYSTEM

A manufacturing system can be seen as a network
consisting of a number of nodes (Fig. 4) where each node
is a set of machines and a queue of jobs that move around
network. Jobs can be external arrivals and end of
processing.

If we apply the above introduced concepts of the
producer-consumer problem to simulate this system we

will have the following parallel simulation model:
Producer process(es):

To generate external arrivals

At each node I:

Consumer process start processing and end of
processing of jobs

The queue of waiting jobs is organized in order of
time of arrival with q size.

Times of most recent arrivals from all arrival sources
for this node {other nodes j or external }.

Let’s take a given node T and analyze it from the
producer consumer point of view like shown in Fig. 5:

AtnodeT jobs could arrive from nodes T1, 12, T3 and
every departure time from these nodes when job comes to
node I is a time of most recent arrival to node I from that
node. Jobs completing processing at node I may go to

Asian J. Inform. Tech., 6 (3): 309-313, 2007

another node K for further processing. Here in the
consumer process a job record 1s removed from queue of
waiting jobs at start processing then a job record 1s
transferred to waiting queue of node K at time of
departure or inserted into processed jobs list if end of
processing of it.

For example, consider a manufacturing system
(Fig. 6) consisting of three nodes (nodel, nodeZ and
node3) where there are external jobs arrivals at nodes 1,2
and jobs departing from nodes 1,2 either go to node 3 or
quit the system.

We notice here that at each node we can have any
number of machines and any job or machine discipline. On
the principles described above the sumulation model will
be consisted of the following processes:

Producer 1: To generate external arrivals 1
Producer 2: To generate external arrivals 2

Consumer 1: Start processing and end processing jobs at
nodel

Consumer 2: Start processing and end processing jobs at
node2

Consumer 3: Start processing and end processing jobs at
node3

313

CONCLUSION

The concepts reported in this paper demonstrate a
possible PDES of mamufacturing systems based on
theproducer consumer computing problem. The proposed
approach provides a powerful basis destinated to design
and simulate a manufacturing system modeled in terms of
connected nodes that exchange jobs. This advantage can
be extended to Flexible Manufacturing Systems (FMS)
because the FMS are being redesigned and reconfigured
frequently and rapidly and their performance should
frequently be simulated.

REFERENCES

Ayani, R., 1993. Parallel discrete event simulation on
SIMD computer, J. Parallel and Distributed
Computing 18: 501-508.

Hybinette, M., R M. Fujimoto, 2001. ACM Transactions
on modeling and computer simulation, 11: 378-407.

Lin, Y.B., 1993. Special issue on parallel discrete event
simulation, J. Parallel and Distributed Computing
18: 391-394.

Madisetti, V.K. and D.A. Hardaker, 1993. The MIMDIX
environment for parallel simulation, J. Parallel and
Distributed Computing, 18: 473-483.

Zeigler, B.P., 1991, Object-oriented modeling and discrete-
event simulation, Adv. Computers J., 33: 67-114.

