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Abstract: This study deals with decision making methodology based on fuzzy set theory to determine the
optimal generation schedule of multi-objective problem with due consideration of uncertainties in system input
data and system load. The stochastic models are converted mto their determimstic equivalent by taking their
expected values. To determine trade-off relationship between conflicting objectives in the non-inferior domain,
the weighting method is exploited. Tn this method, the multiobjective problem is first converted into a scalar
optimization problem and then weights are searched in a systematic manner. A new interactive search techmque
based on binary successive approximation method 1s devised to search weights assigned to the objectives and
incremental cost to obtain the non-inferior solution. Binary coded strings are used to represent weights
assigned to the objectives as well as the incremental cost and the continucus values are obtained to represent
a point 1 the search space through mapping. Once the trade-off has been obtamed, fuzzy set theory helps the
Decision Maker (DM) to choose the optunal operating poimnt over the trade-off curve and adjust the generation
schedule in the most preferred economic manner. This method has shown improvement because the weights
are searched for more significant digits in fixed number of iterations. The validity of the proposed method has
been examined on a sample system and the results are compared with the efficient method to solve the scalar
objective problem and weight pattern is searched by evolutionary search method.
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INTRODUCTION

In a large number of real-life problems, a decision-
maker 1s faced with multiple goals. The levels of
attainment of these goals are to be expressed m the form
of qualitative performance criteria, some of which can be
selected as optimization objectives. Normally, the decision
making input system data were assumed to be well
behaved and deterministic. But in practical situations the
input system data cannot be predicted and estimated with
hundred percent certainties. Tt is bound to wvary
depending upon the uncertamties, load changes, load
forecasting errors, agemng of equipment, measurement
errors etc. So the single datum used in the generation
scheduling procedure can be incorrect in real life
circumstances. Due to these variations, the optimum
solution found out using deterministic data cannot result
into practically optimum solution. Tt is worthwhile to
assume the system data as variable and uncertain for more

realistic approach (Gent and Lamont, 1971; Dhillon et af.,
1993, 1985, 2002; Viviani and Heydt, 1981).

However, with the increasing concern given recently
to environmental considerations,
dispatch 1s required that meets the demand for power
while accounting for both cost and emission. An excellent
review by Chowdhary and Rahman (1980) updates the
developments m the area. The earlier proposals for
minimum emission dispatch (Gent and Lamont, 1971) or
reduced area wide emission (Delson, 1974) were usually
rather simple, adding a single constraint to the problem.
The cost and emission functions are conflicting fimctions
m that minimizing pellution maximizes cost and vice versa.
So, multiple criteria must be considered simultaneously to
attain meaningful, practical, optimal schedule of operation.
Nanda et al. (1988) has proposed a goal programming
technique to solve the optimal load dispatch problem for
thermal generating units running with natural gas and fuel
oil. Yokoyama et al (1988) have proposed an efficient
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algorithm to obtain the optimal power flow in a power
system operation and planning phases by solving a
multi-objective optimization problem. Kermanshahi et al.,
Lakhwinder (1990) presented a decision making
methodology to determine the optimal generation
dispatch and environmental marginal cost for power
system operation with multiple conflicting objectives. The
economic emission load dispatch problem has been
solved through different methods (Kotheri and Dhullon,
2004, Huang and Huang, 2003).

Therefore, n this study the authors formulate
multiobjective generation scheduling problem as a
stochastic multi-objective  problem with explicit
recognition of uncertainties n the system production cost
coefficients, emission coefficients and system load,
which are treated as random variables. The objectives are
clubbed m a single objective with the help of the
welghting  method. The successive approximation
method is proposed to search the optimal weight pattern
mn the non-inferior domain. Further for a known weight
combmation, the generation schedule is also obtained
by successive approximation method in  which
meremental ¢ost, A, 1s represented by binary coded string.
Fuzzy methodology has been exploited for solving a
decision making problem involving multiplicity of
objectives and selection criterion for best compromised
solution. The objectives are quantified by eliciing the
corresponding membership function. The shape of fuzzy
membership function may be decided by the DM and
generally depends upon the type of the problem. In this
study, the membership function of the objectives is
defined in a subjective manner by considering the rate of
mcrease of membership satisfaction function. The best
compromised solution is one, which provides maximum
satisfaction level from the participating objectives/goals
during the search of weights.

STOCHASTIC MULTIOBJECTIVE
OPTIMIZATION PROBLEM FORMULATION

In the multiobjective problem formulation, five
important non-commensurable objectives m electrical
thermal power system are undertaken. These are
economy, environmental impacts because of emissions.
The multi-objective optimization problem 1s defined as:

N

Minimize cost I = Z(ailpiz +by P, + ;) Rs h™ (la)
i=1

(Ib)

N
Minimize NOy emission Iy =Y (3R + bipPi +6;3) kg h ™
i=1
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N
Minimize CO, Ty = Y (a3PE +byP, + ¢;5) emission kg b !
i=1

(le)

N
Minimize SO, emission Iy = . (a3yB7 + by +¢;y) kg b !
i=1

(1d)
Subject to (i) power balance equation
N
Y r-R+R (le)
i=1
Powerlimits P* <P <pU i=12..N (D

where

a;, by and ¢ are cost coefficients of ith umt
i3, bjp and ¢j; are NO, emission coefficients of ith unit
;3. bj3 and ¢;; are SO, emission coefficients of ith unit
a4, by and cyaare CO, emission coefticients of ith umt
P, is real power generation of ith unit.

Py is the power demand.

PiL and PiU are the lower and upper linits of real power,
respectively.

N is the number of generators

B 1s the transmission loss and is expressed through the
simplified well known loss formula expression as a

quadratic function:

i=1 j=1

PRB.

N
By P, +ZBiOPi +B,,P, (1g)
i=1

The stochastic model of multi-objective problem 15
formulated by comsidering cost coefficients, emission
coefficients and load demand as random variables. Then
the generator output automatically becomes random.
Random variables are considered as normally distributed
and statistically dependent to each other. By taking
expectations, the stochastic model can be converted into
its determimstic equivalent. The expected value of a
function can be obtained by expanding the function,
employing Taylor’s series, about the mean. Determimstic
equivalent of stochastic multi-objective optimization
problem is stated as:

Mimmize expected cost

N

_ =y o=

I :2311 B+ by B+ o +ay var(Py)
i=1
+ 215i covia;,P)+ cov(bil,Pi)

(2a)
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Minimize expected NOy emission

N
Iy = 251'21—”12 +byP + Gy 8y, var(B)

2b
= (2b)
+2P covi{a;,, R)+ covib;, B)
Mimmize expected CO, emission
N
_ oy ==
J3 = ZlaiSPi + biSPi + Ciz +ai3 VaI'(Pi) (QC)
i=
+ 213i cov (a3, B )+ cov (b B)
Minimize expected 3O, semission
N
— =y =
Iy = 21 aiy P + by By + Gy + 2y var (B} 2d)
i=
+2Pcovia,, P)+ covib;y B)
Minimize expected variance of power
N N-1 N
Is = Evar(Pi)JrE 2 2 cov(P, J) (2e)
i=1 =1 =i+l
_ N
Subject to Eﬁi =T, +P, (2
i=1
P <p <P, i=12..N (2g)
where P, is the expected real power generation ith of
generator,
ay., Eil and ¢, are the expected cost coefficients
of ith unit.

Ty, Eiz and T, are the expected NO, emission
coefficients of 1th unit

3. 6.3 and c,; are the expected SO, emission
coefficients of 1th unit

R 5.4 and ¢, are the expected CO, emission
coefficients of 1th unit

ﬁD is the expected power demand.

p and pU are the expected lower and upper
limits of real power, tespectively.

N is the number of generators

Py is the expected transmission loss and is given
as:
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L iByF; ark;
=l j=1 i=1
N-l1 N
+ 220]3 cov (P, J)+Z2OPCOV( 2, By
izl it
N N N
£ Y 20Be0v(B, B+ 3 BiP + BooPo
=1 =1 i=1
J#1
(2h)
In tlis study, variance and covariance are replaced
by the coefficients of wvariation and correlation,

respectively. In general variance and covariance are
defined as:

var(x) = Cz(x)i2 (3a)

cov(x,y) = R(X, y)C)C(yIXY (3b)

where C(x) and C(y) are the coefficients of variation
and x and y are the expected values of variables x and v,
respectively. R(x, y) 1s correlation coefficient and varies
from-1 to 1. The zero value of coefficient of variation
implies no randomness, in other words, the complete
certamty about the value of random vanables. Using (3a)
and (3b), the multi-objective optunization problem defined
by (2a-2h) can be rewritten as:

Minimize |:T1=TZ>TS>T4=T5:| (4a)
)
Subject to P By + P (4b)
i=1
Bl <P <BY, i=12...N (4e)
where
N . — —
5= Y AR BB+ Ty =123
i=1
with
[+ 2B + 2Ry Ry SRRy (40
By; =[1+ R(by;, B )C by )C(P )by
Cyj = o
N N
22 (4d)
1
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with N
N L o ByiB - YB=0 (7b)
5 A
=) PR b o
i=1
The above equations can be rewritten as:
T, ZR( P, P)C(R)C(P)BP, : T7]
N
. NG NG X - ZXijﬁj =Y, i=12,.,N (8)
L= Z gt +BgoPo  (48) =
i=1 j=1 i=
with h 4 _
whnere o= . L. ..
U =1. O+C(P) +20R( : u)C(P )C(Bu) Xn 22 WkAlk+2 (W5T11+7\‘PU11)
ko1
Uij =1.0+R(P, P-)C(P-)C(P-)+2.0R(Pi,Bij) N
C(PC(B B By P, i %] Xi= 3 2(wsTy+ApUyy) i #]
k-1

SOLUTION APPROACH s
Y =4, *Eio)*EWkEk

To generate the non-inferior solutions of the e~

multi-objective problem, the weighting method 1s used. In
this method, the multi-objective optimization problem is

) e As )up is known during the search, ﬁi is obtained by
converted into a scalar optimization problem as:

solving above simultaneous equations using Guass
Elmination method. The search of A, 1s terminated when

5 . o
Minimize EWnTn (5a) (7b) is satisfied.
nel DECISION MAKING
Subject to iﬁ _B. 4P (5b) . Consi(jler.ing the imprecise nature of the DM’s
b oL Judgment, it 18 natural to assume that the DM may have

=1 fuzzy or imprecise goals for each objective function. The

fuzzy sets are defined by equations called membership

E < E < E ., i=12,..N (3¢) functions. These functions represent the degree of
membership in certain fuzzy sets using values from Oto 1.

5 The membership value 0 indicates incompatibility with the
EW“ =L w,_g (5d) sets, while 1 means full compatibility. By taking account

ool of the minimum and maximum values of each objective

function together with the rate of increase of membership
satisfaction, the DM must determine the membership
function (T in a subjective manner. It is assumed that
K is a strictly monotonic linear decreasing and
continuous function and 1s defined as:

To solve the scalar optimization problem, the
Lagrangian function is defined as:

5 N N
LBAp) = 3 Wala + Y, Ap(Fp+F - D By (6
n=1 i=1 i=1

1 |, < Jmin

Jimax -1 min max (9
()= | e,
i i

where Ap is the Lagrangian multiplier.
The necessary conditions to mimmizethe
unconstrained Lagrangian function are: 0 izl

L 5 87 e where T#® and J,"* are the minimum and maximum
B Z w, BP XP[_L —lj =0.i=12,.,N (7a) values of ith objective function in which the solution 1s
i

n=1 oF; expected. The value of membership function suggests
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how far (in the scale from O to 1) a non-inferior solution
has satisfied the J, objective. The decision regarding the
best solution is made by the selection of minimax of
membership function as defined below (Tapia and
Murtagh, 1991).

ul = Max[Min{;_L(Jj)k s = 1,2,...,5} ck=12..,2" +1J

(10)
The function pp in (10) can be treated as a
membership function for non-dommnated solutions. The
solution which attains highest membershlp k in the
fuzzy set so obtained can be chosen as best so]futlon or
the one having highest cardinal priority ranking.

ALGORITHM FOR HEURISTIC SEARCH OF
INCREMENTAL COST

In the proposed method the number of binary bits to
represent the incremental cost and weights has been
selected as thirty and six, respectively to get accurate
results. The successive approximation strategy to search
the mcremental cost, A 1s elaborated here.

The stepwise procedure is outlined below:

Read NB, number of binary digits to represent, A.
Set bmary digit counter, 1 =1

N = ;NB-i

Increment 1;1=1+1

If ( i = NB) then Goto 10

¢ Determine Ny and N, as
N, = N+2He!
N, = N-2"&!
¢+  Determine A, and A, as
_ min N max min 11
Ja=AmR gt 1(x —min ) (11)
+  Determine pl ;1=12, ... N from (8) using Gauss
Elimination method
N
Determine AP[I) =Py + P, ,Epil (12)
i=1
hoy = min 1 (xma’i min) (13)
2NE
¢+ Determine p2 1=1,2, ...N from (8) using Gauss
Elimination method

Determine Ap2 — (14)

N
S D

i=1

IECAPL ¢ ApZ ) THEN set N =N, and AP, = AP

ELSE set NN, and AP, = AP3
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If (APy =¢g)) then continue ELSE GOTO 4
+  Stop.

Algorithm for heuristic search of weights: Heuristic
evolutionary method 1s proposed to search the optimal
weight combination. In this method (ol +1) weight
combinations are simulated at 2* corner points of an L-
dimensional hypercube centered on mitial pointWiC.
(2% +1) non-inferior solutions are generated and
membership function is are obtained using (9). The best
or preferred non-inferior solution is obtained using (10).
To continue the iterative process, another hypercube is
formed around the preferred point. Successive
approximation strategy to search the weights is elaborated
here. The weights are generated as given below:
i=12...L J=12.,28 (15

J_ oy 4aid
o =0 13

i NW -k
where YiJ —+2

with NW i1s the number of bmary bits used to
represent weights.

Olf is the scalar weights, ol is the initial value of weights.

Weights [¥;, are mapped in the range of 0-100 Eq. 16.

BJ Bmm CLJ Bmax Bmm . 1_1 2 L
ANW- 1( ) T hsent (16)
cj=12,.2""1

The normalized weights, i are cbtained as:
1

(17)

where BRIn and pMEF are the mimmum and maximum value
of the weights, i, respectively (0-100). ¥ 1s the distance
of the corners of the hypercube from the point around
which hypercube is generated. A matrix has been
generated from possible combinations of binary bits. 0 bit
15 replaced by-V and 1 bit 1s replaced by+Y. As an
illustration the generation of weight combinations for
three objectives has been shown in Table 1. For three
objectives 2’ (eight) different possible weight
combinations can be obtamned. In general the different
possible weight combinations are 2°.

To implement the heuristic evolutionary search, the
stepwise algorithm 1s outlined as below:
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Table 1: Generation of weight combinations at hypercube comers (Three objectives)

Hypercube Possible combinations Distance of hypercube a° a° a°; Possible generated weights
corners of three binary bits by by by corners from centre point at the hypercube comers

! 000 <y =y -y Ay Ay Ay

2 001 Yoy ty & -y @y atety

3 010 -y oty -y ay-y a'ty a%-y

4 011 -y by ty -y atyty atty

5 100 +y -y -y aty a’yy a%-y

6 101 ty -y Ty Aty @y atty

7 110 +y +y -y aty a’yty ah-y

8 111 Ty Ay ty ayty dyty ayty

¢ TInput the data.

¢ Findthe minimum and maximum values of objectives;
Jrinin andj;n.ax 1=1,2,...,L. .

*  Set the iitial centre of = 2NW-1 where NW 135 the
number of bits to represent weights.

¢ Setthe initial value of membership function u* = 0.

+  Initialize iteration counter, r = 0.

+ Increment iteration counter, r = r+1.

e (enerate 2" weight combinations at the edges of
hypercube as given by (11).

*  Initialize iteration counter, k = 0.

* ncrement iteration counter, k = k+1.

¢ Qnerate the non-inferior solutions for kth weight
combination by implementing the algorithm.

*  Find membership function of the objectives from
u(IEi=1,2.., L9

¢+ Find the intersection of the membership function,

Thad :Min{u(Ji)k . i:1,2,...,L}

e If(k=<21), then go to step 9.
¢ Find maximum satisfied membership function,

ul = Max{u.kMi“ k=12, 2" +1}

+  Choose weight combination os° having maximum
satisfied membership function P as a centre of
hypercube.

o If (r £NW) then goto step 18, else contimue.

o If (P <Py then u? =P and
of =of® ;i=12..L> else go to step 6.

+«  Stop.

TEST SYSTEM AND RESULTS

The validity of the proposed method is illustrated on
a six-generator system. The fuel cost, NO, emission, CQO,
emission and SO, emission coefficients are taken from
reference (Dhullon and Kothan, 2000) along with expected
transmission loss coefficients. The generation schedule
has been obtained for power demand of 1800 MW.

Economic load dispatch: When weight w; s setto 1 and
rest of weights are set to zero in problem defined by
(5), then it becomes economic dispatch problem. The

random variables are considered independent and
uncorrelated to each other. The proposed method has
been applied to search the incremental cost A comparison
of the results of the proposed method with the results of
the efficient method as shown in Table 2 and 3 reveals
that this method gives equally good results for economic

load dispatch problem.

Multi-objective generation scheduling: Four objectives,
economy, NO.,50, and CO, emissions are considered
which have weights w;, w,, W, and w, , respectively and
weight w, 18 set to zero. The random variables are
considered independent and uncorrelated to each other
In the iteration, the weights are searched for ol
combinations as per the algorithm. The total number of
iterations required to determine the overall best solution
18 2x(N'W-1). The results obtained are shown in Table 4,
the best result is obtained when k is five. The results
obtained by the proposed method are compared with the
results obtamned by the evolutionary search techmique
(Brar et al., 2002) and are shown in Table 5 and 6. Tt is
evident from the comparison of the results that the
obtained by
comparable with the results of evolutionary search
method for multi-objective generation scheduling
problem. The applicability of the proposed method has
been shown for multi-objective generation scheduling
problem considering four objectives. This method can
also be applied when the number of objectives is less or
more.

results the proposed method are

Stochastic multi-objective generation scheduling: The
economy,  environmental  impacts  because  of
NO,,80; and CO, emissions and variance of power are
the five objectives considered which have weights,
Wy, Wg, W3, Wy and ws, respectively. The cost and
emission coefficients are treated as random variables. The
minimum and maximum values of the objectives are
calculated by giving full weightage to one objective at a
time and no weightage to the other objectives. Three
different cases are considered to realize the effect of
variance and covariance of the random variables to each
other (pair wise).
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Table 2: Comparison of results

Method JiRsh™! P MW A Rs MWh™! AP, MW
Proposed 18721.390 130.14780 10.670020 0.9155273E-06
Efficient 18721.390 130.14830 10.670010 0.9536743E-05
Table 3. Generation schedule corresponding to Table 1

P, P, P; Py P; P
Method MW MW MW MW MW MW
Proposed 251.6940 303.7786 503.4812 372.3225 301.4699 197.4014
Efficient 251.4015 303.7784 503.4813 372.3207 301.4699 197.4015
Table 4. Weight search by successive approximation method
K Wy Wy w: Wy J Rsh™) I (kgh™) I (kg h™") Ji(kgh™)
1 0.30000 0.30000 0.30000 0.1000 18768.010 2300.254 11252.240 58196.590 0.210587
2 0.25000 0.35000 0.35000 0.0500 18757.890 2257.068 11245.680 58474.890 0.358728
3 0.23684 0.39474 0.34211 0.02632 18752.990 2212.061 11242.120 59011.270 0.513120
4 0.22973 0.41892 0.33784 0.01351 18754.450 2174.947 11242.350 59784.460 0.640435
5 0.23333 0.42000 0.34000 0.00667 18758.640 2152.628 11244.330 60575.370 0.716997
Table 5: Comparison of results
Method W, W, W, Wy I Rsh™!) I, (kgh™") I (kgh™) I, kgh™) b,
Proposed 0.23333 0.42000 0.34000 0.00667 18758.640 2152.628 11244.330 60575.370 0.716997
Evolutionary  0.02500 0.82500 0.02500 0.12500 18776.190 2262.629 11256.790 58358.340 0.339653
Table 6: Comparison of results

Pl P2 P3 Pa Ps P6 P]_ A

Method MW MW MW MW MW MW MW Rs/MWh
Proposed 229.6640 273.0310 497.4341 350.8827 375.4346 209.0196 135.4665 6.198579
Evolutionary 242.8604 308.4247 419.2461 369.2791 368.3573 231.8503 140.0172 12.37195
Table 6: Best weight combination under different cases
Case No. Wi Wy W Wy
I 0.31638 0.22599 0.35593 0.06215 0.03955
I 0.17838 0.34054 0.27568 0.01622 0.18919
oI 0.20000 0.38182 0.30909 0.01818 0.09091
Table 7: Best solution for the best weight combination under different cases
Case No. J Rsh™) I (kg bt J: (kg h™h) Iy (kg bt (MW2) P (MW) ARsh™)  APp (MW) p,
I 18790.430 2327.169 11265.480 59354.600 6547.993 139.607 11.607 0.0000916 0.9928
I 18753.380 2209.751 11242.050 59685.080 7823.121 135.095 7.565 0.0000153 0.5506
oI 18803.690 2215.737 11272.210 59905.490 5520.864 136.301 7.121 0.0000916 0.5634
Table 8: Generation schedule for different cases The best solutions are obtained for the above
Case P1 Pg P3 P4 Pj Pﬁ : : : : .
No MW MW MW MW MW MW mennqnta.d cases in whlch dwerse. v.alues of coefflclents
1 249.049 314.750 425480 373750 346.768 2294853 of variation and correlation coefficients are considered.
I 241.719 284104  473.489 359.909 355.706 220.168 The results con"esponding to the different cases have
I 239.642  286.546  467.026 358719  364.141 220227

CaseTI: All the variables are independent to each other.
C(aij) = C(bl_]) = C(Pl) =0.1

R(B,P) =R{a;, B, )=R(by,F)=00

CaseIl: The cost
independent

variables
generations

and  emission
but  power

dependent to each other.
Clag)=Clby)=0.1, C(R) =0.05

R{a;.P,) =R(b;.B)=0.0,R(P,P;) =08

are
are

ij> ij»

Case II1: All the variables are correlated to each other.
Clag) = C(by)=0.1, C(P) =0.05
R(P,P;)=R(ay, B, ) = R(by,B) = 0.5

ij» ij»
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been tabulated in Table 6-8. From the results it can be
seen that there is significant variation in the objectives
and generation schedules under different cases when
diverse values of coefficients of vanation and correlation
coefficients are considered.

The variation of variance of power and expected
cost with respect to coefficient of variation of power and
correlation coefficient of powers has been shown i
Fig. 1 and 2, respectively. From Fig. 1, it is evident that as
the coefficient of variation of power, C(P;) is increased
there 1s considerable increase in the values of expected
cost and variance of power. Also, it 18 clear from Fig. 2
that with the variation of Correlation Coefficient (CC)
there is considerable variation in expected cost and
variance of power. The expected cost increases as CC
15 changed from negative to positive value whereas the
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187404 -1ogg§
187304
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0.01 0.02 0.03 0.04 0.050.06 0.070.08 0.09 0.1
Coefficient of variation of power

Fig. 1. Variation of expected cost and variance of power
with the variation of coefficient of variation of

power
18762 8000
18760 5000

18758 4000 £

H18756 2000 &
18754 0o ©
18752 —&— Expected cost -ZUUUE
18750 —8— Variance of power 40004
18748 {6000

08 06 04 -02 0 02 04 06 08
Coefficient pf correction of real power

Fig. 2: Variation of expected cost and variance of power
with the variation of coefficient of correlation of
real power

variance of power increases almost linearly as CC is varied
from negative to positive value. Due to these variations,
there 13 a need to determine the optunum solution by
taking into account the statistical variation of system
parameters.

CONCLUSION

The operating cost and gaseous emissions are
considered as objectives to be mimmized simultaneously.
The objectives quantified by eliciing the
corresponding membership function. Tn multi-objective
framework it is realized that cost objective and emission
objective are conflicting objectives. The solution set of
the formulated problem 18 non-inferior due to
contradictions among objectives taken and has been
generated through weighting method. When the weight
combimations are simulated by giving suitable variation,
the of non-inferior solutions increases
exponentially with the increase in the number of

are

number

objectives. So the process of generation of non-inferior
surface becomes very time consuming. Another limitation
with the simulated weight problem 1s that the DM may not
be provided with the weight set that corresponds to
actual best solution, In order to overcome the limitation of

the

optimal pattern with the help of successive approximation

interactive method it 1s proposed to search the
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method. Tn this method the solution is guaranteed within
the fixed number of iterations. The accuracy of this
method does not depend on initial guess whereas the
accuracy of other methods 1s a function of 1mtial guess.
The weighting pattern that attamns maximum satisfaction
level from the membership function of the participating
objectives have been designated the best achieved
solution. The comparison of results reveals that the
proposed search methed gives the comparable results in
terms of achieved satisfaction level in comparison with
the efficient method and evolutionary search method.
Further the proposed method provides the facility to
consider the inaccuracies and uncertainties i the multi-
objective generation scheduling problem. The practical
utility of the stochastic formulation is illustrated through
numerical example m diverse cases. Because of the
tremendous amount of fuel cost and pollutant emission in
thermal plants, a small percentage of saving or
achievement m any objective can be considered
significant. Thus 1t fully justifies the need for more
accurate analysis and consideration of randommness in
variables.
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