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Diagnosis of Ball Bearing Faults Using Wavelet Analysis
and Hidden Markov Models (IIMM)
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Abstract: In this study, a condition monitoring system for fault diagnosis of ball bearings in rotating machines

was developed. Features extraction 1s based on the relevant mformation calculated from the vibration signal
by wavelet transform. The faults diagnosis procedure is achieved by Hidden Markov Models and uses the
wavelet feature as inputs to the HMM. This procedure includes training of the HMM and faults recognition
by choosing the model that gives maximum probability of the observation. The designed system was developed
to be able to classify four types of pre-established faults i ball bearings and the normal condition. The system
was trained and tested by experimental data collected from drive end ball bearing of an induction motor,

operating under several shaft speeds and load conditions. The method was applied successfully. Tt permits the
separation of different faults with high recognition rate, almost all fault samples of the database were assigned

to the appropriate classes.
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INTRODUCTION

Tdentifying the cause of process abnormalities is very
important for process supervision. Today’s world of
highly automated complex machinery requires elaborated
decision and advanced condition monitoring systems to
truly fulfil the goals of Computer Aided Manufacturing
CAM. Machine failure occurs when a component,
structure, or system 1s unable to accomplish its intended
task, resulting in its retirement from usable use. Condition-
based maintenance involves the collection and
mterpretation of data relating to the operating condition
of critical components of the equipment, predicting the
occurrence of failure and consequently the determmation
of the appropriate maintenance strategies. Despite the
progress that has been made in the maintenance area,
there still a need for further improvements in order to
mcrease the diagnosis accuracy and to reduce the human
errors. A considerable amount of research has been
carried out previously for the development of many
vibration analysis techmiques. Most of them use either
time or frequency domain representation of vibration
signals, on the basis of which many specific features are
defined, allowing the recognition with a classification
scheme between various operating faulty states. Artificial
neural networks models have been applied to the domain
of fault diagnosis. Thy have the advantage of learning
any type of data, capability of noise filtering and parallel
computing (Duda ef al., 2001; Hay kin, 1998; L1, ef ai.,

1996). Howevertheir performances depend on the
convenient selection of the type of the structure and the
quantities of the training data, which are not always
available in sufficient quantities. Among various
stochastic approaches, the HMM have proven very
effective m modelling both dynamic and static signals.
The success of the HMM in the speech recognition
domain (Rabiner, 1989) motivate its extension to others
domains like fault bearing diagnosis (Miao and Makis,
2007; Purushotham et al., 2005).

In this study a hidden Markov model based faults
diagnosis of bearing is developed. The features extraction
1s based on wavelet transform. Various defects, which
have mechanical origin, are detected by the analysis of
the vibration signals recorded for these bearings under
different operating conditions. The performances of the
proposed method based on wavelet features, are
compared to those based on temporal and frequency
features.

VIBRATION SIGNALS AND FAULTS
CHARACTERISTICS

The vibration signals analysis is applied in order to
examine the health of the rotating machines. The
momtoring of these systems aims at:

+  Reducing the number of system stops.
»  Improving reliability of the production equipments.
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Increasing the availability of the system.
¢ Helping to better manage the stock of the spare parts.
The mechanical vibrations are oscillating movements
around an average position, these movements can be
periodic or not pericdic (transients or random). The
periodic vibrations correspond to the rotation movement
of the machine. Transient vibrations are generated by
discontinuous forces (shocks), correspond to the impact
of balls and the race defect. The chipping of a track of
bearing causes shocks and a resonance of the stage. The
shock frequency is characteristic of the type of the ball
bearing damage and can be calculated if the bearing
geometry and the rotating speed are known.

Depending on the location of the damage, (outer ring,
inner ring and rolling elements) by spectral analysis this
phenomenon appears in high frequencies.

A defect of ball bearing appears by the continual
repetition of the defective contact with the outer race of
the bearing like the inner one. For that, the characteristic
frequency of the bearing is the double of the rotational
frequency and we note it, f, (Algunindigue et al., 1993,

Harris, 1991).
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Where D, is the balls diameter, D, is the bearing pitch
diameter Fig. 1, f, mechanical rotor speed in hertz.
Vibrations are generated by stator currents at
frequencies given by:
fbng =|fs £ m £
Where, s is electrical supply frequency.
Repetition frequencies for the inner £, and outer race
f. are described by:
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Where, n, is the number of bearing balls and ¢ is the
contact angle between race and balls.

It should be noted that specific information
concerning the bearing construction are required for
calculating the exact characteristic frequencies. However,
these frequencies can be approximated for most bearings
containing between six and twelve balls Fig. 1.
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Fig. 1: Schematic of a ball bearing
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Fig. 2: Example of a faulty vibration signal

This generalization allows for the definition of
frequency bounds where the bearing race frequencies are
likely to show up without requiring explicit knowledge of
the bearing construction.

The measuring of the vibration signals consists on
the transformation of the mechanical vibration
(acceleration) into electric signal Fig. 2.

FEATURE EXTRACTION
Before the application of the feature extraction

procedure from vibration signals, they are normalised by
the following expression.

€)

Where, s; is the sample i of the signal and o are
respectively the average and the standard deviation of the
signal, x;signal after normalisation.

Frequency analysis: The use of Fourier transform is to
search for the periodically repeated peaks in the power
spectrum. Frequency features are very informative for
rotating components like ball bearings, since well defined
frequency components are associated with them. Every
defect in bearings is expressed by high frequency
components.

The resonance frequency oscillation of the shocks
and the possibly suppressed shock periodicity are two
modulations of the vibrations that both reduce the
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amplitude of the power spectrum peaks, which therefore
are more likely to be suppressed below the overall noise
level. The applied method is to remove the resonance
frequency modulation with the envelope method, which
consists of a band-pass filter including the resonance
frequency followed by a demodulation and a fast Fourier
transformation. Both these methods use a band-pass filter
to focus on a range of frequencies which must be wide
enough to include the resonance frequency. Thus, it is
likely that also oscillation frequencies where bearing
shock oscillations not are dominating are included m the
analysis, with consequences such as lower signal to noise
ratio and more sensitivity to possible suppressions of the
impact periodicity (Ericsson ef al., 2005).

Wavelet analysis: The theory of wavelet transform 1s a
coherent mathematical framework for analyzing signals. Tt
was developed as an alternative to the Short Time Fourier
Transform (STFT) to overcome problems related to its
frequency and time resolution properties. It allows
separating signals of high frequency transitions, from low
frequency vibrations. The wavelet transform is defined as
the mntegral of the signal x(t) multiplied by scaled, shifted
versions of a basic wavelet transform function &(t), a real
valued function whose Fourier transform satisfies the
admissibility criteria (Daubechies, 1992; Lou and Loparo,
2004; Mallat, 1998).

The wavelet transform of continuous time signal, x(t),
is defined as:

Wab) = Ix(t)%w(%}dt, acR*—{0}.beR (4)

Where, a is called the scaling parameter, b is the time
localisation parameter. Both, a and b can be continuous or
discrete variables.

The Continuous Wavelet Transform (CWT) is a time
frequency analysis method which differs from the more
traditional Short Time Fourier Transform (STFT) by
allowing arbitrarily ligh localization m time of gh
frequency signal features by a variable window width,
which is related to the scale of observation. This flexibility
allows the isolation of the high frequency features.
Another important distinction from the STFT 1s that the
CWT is not limited to using sinusoidal analyzing
functions. A large selection of localized waveforms called
wavelet mother can be utilized.

Multiplying each coefficient by an appropriately
scaled and shifted wavelet yields the constituent wavelets
of the original signal. For signals of finite energy,
contimious wavelet  synthesis  provides  the
reconstruction formula;
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Associated with the wavelet ¥, which 15 used to
define the details (high scale/low frequency content) in
the decomposition, a scaling function to avoid intractable
computations when operating at every scale of the CWT.
Scales and positions can be chosen based on a power of
two. The discrete wavelet transform DWT analysis is
more efficient and just as accurate. In this scheme, a and
bare given by: a=2,b=k2 , m, neZ.

Let us define:

da
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A wavelet filter with impulse g (lugh frequency),
plays the role of wavelet @ and scaling filter with impulse
response h (low frequency), plays the role of scaling
function ¢. Then the discrete wavelet analysis can be
described mathematically as:

w(j.k) = ;X(i)gj,k(i) (8)
And discrete synthesis:
X(t) =3 Y wikw () (9)
E7keZ
The detail at level j is defined as:
D;(ty= Y wlj.lw, (1) (10)

neZ

Features extraction is carried out by the wavelet
decomposition at level 5. After reconstitution of
decompositions, we choose the feature vectors as the
observations in different decomposition levels.

HIDDEN MORKOV MODELS (HMM)

HMM models estimation: The HMM 15 a Markovian-
based model, extended from the concept of Markov chain,
whose states cannot be observed directly. Usually, 1t
contains finite number of states, where each state
generates an observation at certain time pomt. The hidden
state is characterised by two sets of probabilities: a
transittion probability and an observation probability
distribution. Tn addition, the third probability distribution
has to be computed for an HMM 1s the distribution of the
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initial hidden state. In summary, the complete
specification of an HMM includes the following elements
(Robiner, 1989).

Set of hidden states:S = {S,, S,, . . ., Sy},

Where N is the number of states in the model;

State transition probability distribution:A={a;},

Where a; = P[q.,= Sjq=Si], for 1< 1j < N, q represents the
hidden state at time t;

Set of observation symbols: V = {v;, v,, . . ., v},

Where M is the number of observation symbols per state.
Observation symbol probability distribution is given by:B
={b®)}.

Where by(k) = P[v; at t|q=S;], for 1<, j< N, 1<k < M;
Initial state probability distribution: B = {m;},

Where 7t; = P[q,=S], for 1<i,j< N.

For convenience, an HMM can be represented by the
compact notation: A = (A, B,m) to indicate the complete
parameter set of the model.

The HMMSs training is based on the data from
different fault conditions. In this phase input features are
modelled by a set of parameters A = (A, B,1). The initial
parameters of the HMMs are chosen randomly. Different
initial parameters generally produce different HMM

models.

HMM based diagnosis: The HMM based diagnosis
consists on finding the best path or state sequence in
each trained model and selecting the one that maximises
the path probability for a given input observation.
However, in real application, like bearing condition
monitoring, it is more efficient to establish several HMM
models corresponding to different conditions in
consideration Fig. 3.

In that case, the hidden states of the model do not
have physical meaning and decision regarding the current
machine state is made by choosing the model that gives
maximum probability of the observation.

That 1s, bearing condition C can be selected by
C =argmax{P(O/A)}, 1< j< Ne (1D

Where, Ne¢ is the number of bearing conditions
considered in a classification system, which is equal to
the number of HMM models in the system. The Hmm
model consists of a model of five states.

RESULTS AND DISCUSSION

The vibration data used for validation is composed
from four different faults states of ball bearings and one
class representing the normal state.

The class ¢l represents a new ball bearing, ¢2 an
outer race completely broken, ¢3 a broken cage with one
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Fig. 5: Feature extraction (split into a sequence of non-
overlapping observation]

loose element, c4 a damaged cage with four loose
elements and ¢5 a no evident damage (badly warned ball
bearings).

The rotational frequency of the bearing is equal to
24.5625 Hz. The Measured signal is acceleration (cm/s?).
Signals are sampled at frequency of 16384 Hz. The
minimum frequency considered is 0.7 Hz. The recorded
signals include 2048 samples.

Three kinds of features are extracted to characterise
each vibration signal.

The extracted temporal feature vectors are composed
from temporal observations Fig. 5.

The Fourier transform is best suited for the analysis
of stationary signals. In such case, Frequency features are
very informative. Every defect associated with the ball
bearings is expressed by high frequency components.
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Fig. 6: Vibration signal and specturm of a normal ball
bearing
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Fig. 7: Vibration signal and specturm of defective ball
bearing

For each of the four default classes Fourier transform
was carried out. Figure 6 and 7, show the spectrum of the
signals it exhibits the normal frequency characteristics
and those related to one kind of defect. Based on visual
inspection, or simple threshold test, it was observed that
for the normal condition, the frequency components were
concentred in low frequency and defect condition
frequency components were observed in high frequencies
some spectral frequency features were computed in high
frequency bound (maximum frequency, median frequency
and mean amplitude).

In many cases it is difficult to distinguish the bearing
conditions by Fourier transform method. However,
wavelets transform permits achieving best results for this
specific application. After data normalization, the
Daubechies-1 wavelet was used to achieve the wavelet
transform.

The vibration signals and the  wavelet
decompositions of the signal are split into a sequence of
non-overlapping observations. The length of the
observation was chosen to reduce the computation time
and at the same time containing enough information to
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Fig. 8: Example of feature extraction from second level
wavelet decompostion (detail D2)

Table 1: Ratio of good classification for temporal and wavelet features,
given for training and testing data.

Method Training (%) Testing (%)

Temporal features 96,21 94,47

Frequency features 97.14 94.89

Wavelet features 100 99, 59

capture the local features of the signal. The extracted
wavelet feature vectors are composed from wavelet
observations Fig. 8.

In order to validate the proposed method, the HMM
was trained based on the data from different fault states.
The vibration data was divided into two separate groups,
one for training and the other for testing. Thus, data used
for testing was not used in training. After training
procedure each class of faults is represented by an HMM
model A = (A, B,m). Consequently fives model are
estimated Fig. 3.

In decision making the problem to be solved is
reduced to the estimation of the conditional probability
between the observations and each HMM model.
Therefore, each observation is assigned to the class
corresponding to maximum conditional probability.

Results show that, using observations from temporal
vibration signal as features for the HMM classifier gives
a recognition rate of 96,21% for the training set and
94,47% for the test set Table 1. The introduction of the
frequency features, improve slightly the reconnaissance
rate. However, the use of wavelet features permits to
improve considerably the recognition ratio and gives best
results. Consequently, all the elements of the training set
are correctly classified while a rate of 99,59% of good
classification in the testing set is obtained.

The error of 0,41% is due to the confusion between
two elements from classes 3 and 4, which represent
respectively broken cage with one loose element and
damaged cage with four loose elements. These two
classes are similar in the damage of the bearing cage and
differ only in the number of loosing elements. However,
the remaining classes 1, 2 and 5 are completely separated.

CONCLUSION

In this study, we develop a method for vibration
signal analysis and fault diagnosis. It permits the
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recognition of four faults affecting the ball bearings and
the These detected by
analysing the vibration signals recorded under different
Wavelet
high
bearing

normal  state. faults are

operating  conditions. transform  allows

separating  signals frequency
corresponding defects
frequency. Faults diagnosis based on Hidden Markov
models is realised in two phases. In the first phase the
feature vectors are extracted to train the HMM. In the
second phase feature vectors are assigned to the class

that gives the maximum conditional probability of

components

to from low

observation to the corresponding model. The obtained
results show that the proposed method based on wavelet
features gives a satisfactory recognition rate, compared to
the methods based on the temporal and frequency
features.

REFERENCES

Alguindigue T., A. Loskiewics-Buczak and R. Uhrig, 1993.
Momitoring and diagnosis  of rolling element
bearings using artificial neural networks, IEEE. Trans.
Indus. Elec., 40: 209-216.

Daubechies, I, 1992. Ten Lectures on Wavelets.
Philadelphia, PA: Society for Industrial and Applied
Mathematics.

DudaR., Hart P. and Stork D., 2001. Pattern Classification,

(2nd BEdn.), Wiley-Interscience.

347

Ericsson, S., N. Grip, E. Johansson, T.. Persson, R. Sjo’berg
and J. Stro'mberg, 2005. Towards automatic detection
of local bearing defects in rotating machines, Mech.
Sys. Signal Processing, 19: 509-535.

Harris T., 1991. Rolling bearing analysis, (3rd Ed.), New
York: Wiley.

Haykin, 5., 1998. Neural networks: A Comprehensive
Foundation, (2nd Edn.), Englewood Cliffs, NI:
Prentice-Hall.

L1, Y., S. Billington, C. Zhang, T. Kurfess, 3. Danyluk and
S. Liang 1996, Adaptive prognostics for rolling
element bearing condition, Mech. Sys. Signal
Process, 10: 1-17.

Lou X. and K.A. Loparo 2004. Bearing fault diagnosis
based on wavelet transform and fuzzy mference,
Mech. Sys. Signal Process., 18: 1077-1095,

Mallat, 5., 1998. A wavelet tour of signal processing,
(2nd Edn.), San Diego, CA: Academic.

Miao, Q. and V. Makis, 2007. Condition monitoring and
classification of rotating machinery using wavelets
and hidden Markov models, Mech. Sys. Signal
Processing, 21: 840-855.

Purushotham, V., 3., Narayanan and S.A N. Prasad, 2005.
Multi-fault diagnosis of rolling bearing elements
using wavelet analysis and hidden Markov model
based fault recognition, NDT and E International,
38: 654-664.

Rabiner LR., 1989. A tutorial on hidden Markov models
and selected applications m speech recogmtion,
Proc. TEEE. Ultrasonic Symp, 77: 257-86.



