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Simulation of non Stationary Biphasic Flow in the Natural Channels
with a Profile Variable in Long
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Abstract: The study deals with an approximate numerical method used to resolve non stationary biphasic flow
equations emphasising on its prevalence with regard to the other electrical and hydraulic analogy methods.
Considering the studied field of inquiry the approximate numerical resolution of the integral or differential
equations of the non stationary flow remains the only possible way to determine all the unlcnown functions

such as: y (x.1), z (x,1), Q (x.1).
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INTRODUCTION

Non permanent current equations in open air, written
m integral or differential form, are difficult to resolve. The
closed form solution seems even more impossible to find
because of their non linearity on one hand and of the
complexity of certains dependent variables functions on
the other hand That is why a choice must be done either
using the approximate numerical resolution or realizing
analogical models which allow obtaining quickly the
solution of problems arising from flow in grid or dendritic
hydraulic networks (Cunge ef af., 1980). The hydraulic or
electrical analogy methods are less recommended, this is
due to the application of new modelling systems made up
of processors allowing the setting up and the checking of
data such as accumulation volumes in the flood areas, the
hydraulic network topology, through section, model
construction programs, calculation and post processor
programs, which can analyse the results obtained and
also introduce the boundary conditions, a task which
becomes extremely simple (Carlier, 1986). The control flow
of the natural channels is the permanent concern of the
engineers hydraulic and fluid mechanic (Hug, 1975,
Rouse, 1938; Tppen, 1949) who seek to contain, as far as
possible, the natural phenomena, in present case the
tloods, by work of re-calibering, reshaping, rescinding of
the curves and damming up n order to control or at least
to slow down the various processes of production and
transfer of the sediments in the natural channels. These
processes, which are generated by waves of flows which
capacity of destruction or drive related to the horizontal
speed of propagation is proven, are
irreversible.

sometimes

FLOW GRADUALLY VARIED IN A CHANNEL
WITH VARIABLE SLOPE

The gradually varied flow in natural channels with
removable bottoms presents a major unportance for the
analysis of the phenomena of erosion and deposit
phenomena m the levels of these channels under of the
influence of raising backwash curves created by the
hydrotechmical structures. To study this flow, it s
necessary to consider that the longitudinal profile of the
channel itself 1s vanable during all the period of
transformation of the bed.

To solve this problem, it 1s necessary to take mto
account the system of the three following equations:

*  Dynamic equation:
dy__viv 1w _Q M
ox  gox gat K2

»  Equation of formation of the bed:
aQs ,0Z 5
—=—"—b0 (2)
ox at

*  Equation of constancy of the flow: (Q = Cte).

This last condition is of primary importance; indeed,
the flow varies in function of time according to a certain
diagram. By taking Q=const., we must replace this diagram
by another graduated, by considering that the flow is
constant during an interval of time At. In this case, one
considers that the bed of the channel is wide and of an
almost rectangular form. Let us lay down the condition
that erosion occurs in a uniform way according to the
width and that the banks are stable.
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The term 1 v is defined according to the depth
g ot
variation, because the flow 13 constant, However, taking
mto account the fact that the flow 1s gradually varied, this
term, in more the share of the cases, can be neglected,
except for the case where speeds are close to the critical
engine failure speeds.

Let us first examine the general case, then the
approximate calculation schema will be studied of
approximate calculation. The solution of the Eq. 1 and 2
1s reduced to the solution of hyperbolic equations by the
method of the characteristics worked out by
Khristianovitch {(Cunge ef al., 1980, Carlier, 1986; Hug,
1975; Rouse, 193%).

dz dz odzdx dz . 0z,
at dt oxd dt ox (3)
dv _dv ovdx dv . av
ot dt oxdt  dt ox
where

_dx
Cdt

By substituting these expressions in (1) and (2) and
knowing that oh  Q dv , we obtamn:

ox bv_zax
L0z dQs ogv where: Qs =vyf(v)b and
T R
t
AQV4
fiyy ==
) o
,.dz 97, . al
v(dt 'nax)f vf(v)aX
By o oh__vov_1av_ | @z Q ov_
ax ox  ox  gox got X bylox
_yOv _1ldv mdv_
gox gdt gox
Thus:
% ,dz (4)
™o Yf(V) —vdt
9z Q .ov dv
gt M-vtg—2)—=lg+— (5)
B Ve T
il “7'(v) 0
D= Q |[=Ynn-vitg—r) g’ =0
g MNovig—y by
bv
Thus:
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n +v(g—%—1)n—g1,f’(v):o (6)
bv Y
By solving the Eq. 6, we find:
dx gQ
& w32 (7)
(dt )l [bVB
dx gQ
By —o= &Y (8)
(dt )2 {bvs

To find the relation z = £ (), it 13 necessary to calculate the

determinant D, = 0
dz
moov
dt dv dz
D, = —ny(Ig+ —)+gy ——=
i . 1g+dl ny'(lg dt) gY’dt
dt

dz =—(gldt + dv)
g

Therefore, we will have definitively:

dx =Wdt
1 ' ©)
dz = ——W(gldt + dv)
g
dx = Qdt
. (10)

dz = —lQ(gIdt + dv)
g

APPROXIMATE SOLUTION OF THE
EQUATION OF DEFORMATION OF THE BED

As indicated previously, the term 1 v can be

g ot
neglected and the Equ. simplified (1). We have:

az q oh q dy oz
= ——f h ——f h (11)
L (v) ( ) ( )h2 . )
gy VOV _ v Oy %_1_
X g gh2 ax N
By 0z hg dy Pz, Dy
gh® ax ax  p¥ax ax’ pm
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Where:

(12)

ORE 55 2.2 2,2

QI,S (bh)BS h3,5 hrn ?
dy, W, D W
ax b’ h™ b ox

By substituting dy of the Eq. 12 in the Eq. 11,

ox
we obtain the equation of deformation of the bed in the
form:

oz Dl

3 x| pm
_’Y’aiz _ %f’(h) X ?
t h 1 __¢cr
h3

513y 22 _ | 222 DU (13)
(b, - b= = ghf (h){a;hm}

where: h = y-z;, however y f(x)
Here, it is supposed that dy _ 0} this in addition to
P
the assumption neglecting the term l? means that the
g ot

deformation of the bed occurs more mtensely than the
variationn of the level of the surface water. Then, the
equation takes the form:

oz 0z
—+F—=-F (14)
an 1oy 2
3 13
Where : F:h jhcry’; ZZLDI; h=y-=z
hf’th) h™

The value of y can be calculated from the initial
conditions or taken equal to the average value during a
given interval of time.

The Eq. 14 can be solved by analyzing the auxiliary

system:
dx _dt _ dz . from where:
a K B
dtzidx:jidx:‘wclzq)l (15)
q q
dt:—idz:—jgdz:t+ Cy = —0y (16)
2

2
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where C, and C, are functions of the independent
variables of x annd t. The relation between C, and C, can be
found from the 1mtial conditions.

Since h= f(x) 1s a very complex relation, it is more
convenient, for the solution of the problem to use the
grapho-analytical method. For t = 0, c? = ¢,
calculating ¢ and ¢, we can plot the graph e = recdy
(Fig. 1); after that, it will be more practical to express ¢, in
this form x ¢,. In addition, to time t the relations (15) and
(16) give:

and while

h-C=-0,-Cy
Thus:

Co=— (Ot 920+ Cy =0+ (17)

with: ¢=—(¢ +¢z)

These equations give a linear relation between C |
and C , providedd, that ¢, and are given. To calculate ¢,
and ¢, it is necessary to give x and the value of
deformation of bed 7 ; then one carries the Eq. (17) on the
graph (Fig. 2) and the pomt of mtersection of this line with
the curve Cg - f(C?) will be the sought after solution.

Knowing C,, it is easy to determine the moment t, of
deformation of the bed at level z in section x ;;

t=¢.-C, (18)

C,=x

F 3

Fig. 2. C, = £ (C))
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To explain the method of calculation, a numerical
example is given afterwards.

In addition to the method described above, it 1s
possible to propose an analytical method; it consists of
the search for an analytical relation between C? et 0 .In
certain particular cases (example, for alluviation of aQbed),
this relation can be obtained easily. Tt often has the
following form:

Cy = MCY (19)

where: n - whole or split number.

By tracing an anamorphosis logarithmic curve: lg
C, = lg M+ n lgC,, we can check the reliability of the
relation (19) for the studied channel and to determine, in
the affirmative case, the constants M and n. It may be that
this relation is valid only for part of the studied section.

To obtain the final relation, it is necessary to
substitute C; and C, in (19) according to x, t and z, by
using the Eq. 15and 16:

—¢; —t = M(0, —at)" =M(gpx —at)" (20)

The Equation obtained determines implicitly the value
z = f{x, t). To simplify the calculations, we determine x = x

(z, t):
1
at + {—;A(q)z + t)}“ (21)
9y

X =

By giving t and z , we determine the functions ¢, et
¢, and we calculate the sought value x. In this manner, we
can plot the deformed profile of the bed for any mterval of
time At. Tt is necessary to notice that with time the level of
the free face, because of the continues deformation
continues of the bed, increases or decreases;
consequently, it 1s necessary to check from one moment
to another the height of the water level.

Thus, by applying the iterative method we can
determine not only the deformation allowed of the bed,
but also the rise and the lowering of the free surface water
level.

FLOW AND DEFORMATION OF THE BEDS

The non stationary flow in the channels over gravel
beds is a very complex phenomenon; its analysis runs up
against many difficulties. The increase of the speed due
to the ncrease of the flow and the variation of the slope,
mevitably involve the erosion of the bed which can reach
great values in the sections where speed 1s maximum. The
quantity of the eroded solid matters will be deposited on

the sections down streams immediately behind the face of
wave, then erosion weakens, simultaneously and
proportionately. The character of erosion and the alluvial
deposit depends on the type of the flow and above all the
speed of the flow. The change of the coast of the bed
influences, on the rise or the lowering of the level of the
free face. Thus for the examination of the phenomenon in
question, it is necessary to take into account the
interdependence between the non stationary flow and the
deformation of the bed.

To solve the problem arising, it is necessary to
examine the system of three equations with three
unknowny, zand Q (ory, zand v).
Dynamic equation:

Loy _ 9w ddv v (22)
ax a9x 2" gt CR

Equation of continuity:

b(@—%ﬁﬁzo (23)
at ot ax

Equation of the bed deformation:

Oz _ 0% o O 24
batf ™ =Q51*W/ (24)

Using (23) and (24), we can obtain the equation of
continuity in form:

by _ 9+ Qsy) (25)
ot ax

The left part of this equation represents the speed of
the variation of the water level; this variation depends on
the liquid flow and the solid discharge.

This type of flow was examined by De Vrio and Levy
by proposing a solution by the method of the
characteristics.

Let us examine, initially, the problem arising by using
the solution given by Khristianovitch. Only the case
where the flow is gradually varied will be studied, in other
words the case of the long waves. The equation of
continuity in integral form is written as:

Tifb?{dtdx - TT 78@21; 9D grax

ity t %y

X3 X3 t t
J.bYtde - J.bytldx :_[(QX1 + Qle dt 7J.(QX2 - QSX2 dt
X X t t

(26)
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where: ¥y and Yy, - water level at times t, and t,.
QK1 et QSK1 -liquid flow and solid discharge in section i.

The left part of (26) represents the volume of water
which accumulates on the section x, - x, during the interval
t; - t; (Fig. 3). This difference is determined by hatched
surface.

The right part gives respectively:

The difference of liquid volumes going in and coming
out of the section (Fig. 4).

The difference of the sohd particles carried (or
settled) in the limit of the section during period t,-t,

(Fig. 5).

By adding the two graphs (4) and (5), the rise of the
level can be calculated; this rise depends on the
deformation (erosion or deposit) of the bed.

The solid discharge can be expressed as follows:

Qs

s

HQ

o=

_wvhb

=

Qs = Qf(v)

where: W- average turbidity or concentration of the
solid particles. Consequently:

0Qs; _9WQ) Qon uoQ 27)
ox ox Yox v oox
replacing this Eq. 25, gives:
bal:_(1+ﬁf)a£_2’aﬁ (28)
ot voax v ox
If p=<<1 this equation takes the form:
p _9Q_Qou (28)
at ox ¥ ox

The additional term Q ou shows that the rate/thythm
v ax

of the mcrease in the water level on a section with
variable bed m the case of the non stationary flow
depends, to a certain degree on the variation of the
turbidity of the water current in length. It can be affirmed
a priori that usually (except for the water current with a
slope close to the slope critical), the propagation velocity
of the face of wave in the case of the non stationary flow
in the channels with movable bed, differs very little from
the velocity of flow in the case of that with stable bed

(Levy, 1967).
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Fig. 3: Variation of free surface

b Q
T

Q

4

Fig. 4: Q =f(x, t)

b Qs
Qs

Qs

t,
Fig. 5: Qs =fix, t)

The Eq. 25 can be written as follows:

Qs = ff‘ —AQv = “‘:fh Q(y) = 4AQyS = 00
thus:
n+ v = hil+ 4%) (29)

b

Levy concluded that the calculation of the non
stationary flow in channels with movable bed is
characterized by the fact that the propagation velocity of
wave is defined by the expression:

dx = (v +fgh, Jdt

(30)
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with:
~h(1+ 24,
i
The dynamic equations, of continuity and

deformation of the bed can be written in the form
(Levy, 1967; Bolchakov et al., 1984):

CONCE Y
ot ox T ox T ox

AN (31)
ot o9x  ox

dz  4Aqv? ov

v ox

or in matrix form:

5 v v g g 5 v —gl
—~{hj+| h v 0| -|h|=| 0 (32)
at ox 0
z z
4Aqv 0 0
14
Knowing that:

w_dv ov

o dt ax

oh _dh B_h

ot dt Bx

or_dz_ 02

o dr ox

with m_= dx / dt the system (11) will take the form:

(v— )—+ ﬁ 9 _ I*g

Vo gax ax F

ov dh
h—+(v-n)— - (33)
O n)ax it

4Aqv3a_v B az _dz

Y oox Bx dt

Characteristics 1M1 can be calculated using the determinant:

4Aqv°
1 n
H
3 2 2 3y 4 _
-1 +2vn° +(gh - v~ +4gAqv’ m —4gAqv” =0

<

The three roots of this equation are:

m= (T =veahns b-hae )G9
Y

up :(%)z :Vfﬁ (35)
N3 = f’(\’)#3 (36)
Y- =)

To determine z = f (1), the second determinant should be
calculated:

ol dv
gl- 8 &8
dh
D,=| — v-m 0]=0
1 it n
dz
I 0 L
dt n
dh dz
niv - n)(ng) g'na g(v—n)ftzo
(g1+—) mn_ dh dz
dt” v-m ot d
dz—idmﬂdwmdt:o (37)

v-n g
Since 1_has three values, an equation can obtained
for each characteristic. Consequently, by solving this
system of equations by the method of the characteristics
or the finite differences method, the unknowns z, hand v
can be determinated.

NUMERICAL APPLICATION

To explain the method described n the paragraph (5),
the following example is studied:

The study concerned 1s given n the form of a profile
longitudinally. The principal characteristics of this profile
are indicated in the following table (Table 1).

The average width of the river b . = 400 m; the flow

moy

Q=4000m’s" . q=Qb=10m 4 .'v, =067 m
s_h0: 9 )
Vo

=15 m; the fall of the water level of section x,=0 with

Table 1:The principal characteristics

xm) zy (M) ¥ {m) -2o), ()
-3.000 -0.2 7.8 8.0

0 0.0 7.7 7.7

2000 0.3 7.5 72

5000 -0.2 7.2 74

7000 -0.1 7.0 71
9000 0.05 5.8 6.75
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Table 2: The computation results for each section

. 2, (m) y () ¥z, (m) =" (£)"10 C2ogy @=310°8
{)

-3000 -0.2 7.8 8.0 0.533 3472 104.10°

0 0 7.7 77 0.513 24.60 7410

2000 0.3 7.5 72 0.480 13;53 40,6.10°

5000 -0.2 7.2 7.4 0.493 17.20 51,6.10°

7000 -0.1 7.0 71 0.473 11.85 35,6.10°

9000 0.05 6.8 .75 0.450 7.56 22,7.10¢°

1
.5
0
.3
4
5
13
7
6.5
[
55
3'5
2.3
1.?
o0 S
T T T 7T T T T T T 7T T T T T T T T T 11
se2g ssg'8:s38¢ss8§88szs8¢¢szsz8zs8
ERE 88 REB57383838c82888% %
1g. 6 ~0 0
g 6 cf =)
. _ . P _ ) ]
section x,=9000m is of 7,7-6,8=0,9m; _ Yly-z"” (39)
4yADyq* (m+ 6)

Ay L 09
Q% k*  (4000)°
1,1T/m’.

It is asked to calculate the transfer of the bed and to
trace its configuration at the end of each interval of time.

=562,5.1071" . A = 0,0002 ; v

Solution: By using the expressions (15) and (16), one will
have:

h? , (while neglecting h’; in front h')
TX,

qf'(v)

AyAqt
h3

s 5
v.h
oy = A5
4Avq
(38)

f(vy= quv4 =f{v)= 4quv3 = X

Yh5+m
J 4yan,g®

21 m
= Ll 7= T’h I dz
Fy f'(h).qDy

dze IL
4vAD,

¢y

(y _ Z)5+m
q5

dz
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Let us pose: v - z=h £, where h;-depth corresponding to
the stop of the phenomenon of erosion.

_ v’hﬁ 5. Y'hgl% m+6
Oy = E oy =
4Avq AAYE’D, (m + 6)
A- Coefficient in the formula has; qr = AYV4q A =0,0002

Letus take: D, = 0.02; ¥' =1,1T/m’, m = 3.0, one obtains:

5 4
¢1@:1,1.15 10 Ei = 1003
42.1.10°
1,1.15%.10* 10°
08y = "~ 31078’
42121009

The computation results for each section are
indicated in the following (Table 2).

The curve Cg :(P(C?) is represented on the graph
(Fig. 6); this curve has an opposite form compared to that
relating to the variation initial depth on the section
concerned.
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Table 3: The calculation of the deformation of the bed

m  ym  z(m  y-z@m - yh— 2 @p %100 a® @105 KX $.10% gy O L10%)
0 X

-0.05 775 0.517 N 26.4 T9.2 369 0 79.2 -400 15
-0.1 78 0.520 27.8 83.4 380 0 83.4 -600 23

0 77 -0.2 7.9 0.526 30.8 924 403 0 92.4 -1300 52
-0.3 8.0 0.533 34.7 104.1 430 0 104.1 -2000 86
-0.4 8.1 0.540 39.0 117.0 459 0 117.0 -2800 129
-0.5 82 0.547 43.8 131.4 490 0 131.4 -3000 147

2000 7.5 0.1 7.4 0.493 17.2 51.6 291 58 45.8 1300 20
0.0 7.5 0.500 19.5 58.5 313 6.3 52.2 1000 32
-0.1 7.6 0.507 221 66.3 335 0.7 59.6 700 43
-0.2 17 0.513 24.6 738 355 71 66.7 400 57
-0.3 78 0.520 27.8 83.4 380 7.6 75.8 =200 83
-0.4 79 0.526 30.8 92.4 403 81 84.3 -1000 121
-0.5 8.0 0.533 34.7 104.1 430 806 95.5 -1500 151
0.6 8.1 0.540 39.0 117.0 459 92 107.8 -2300 198

5000 72 -0.1 73 0.486 15.1 45.3 271 13.5 31.8 5400 11
-0.2 7.4 0.493 17.2 51.6 291 14.5 371 1800 93
-0.3 7.5 0.500 19.5 58.5 313 15.6 42.9 900 128
-0.5 17 0.513 24.6 738 355 17.8 56.0 800 150
-0.6 78 0.520 27.8 83.4 380 19.0 6.4 500 171
-0.7 79 0.526 30.8 92.4 403 202 72.2 100 198

7000 7.0 -0.2 72 0.480 13.5 40.5 255 17.9 22.6 6500 13
-0.4 7.4 0.493 17.2 51.6 291 20.4 31.2 5300 50
-0.5 7.5 0.500 19.5 58.5 313 21.9 36.6 1700 166
-0.6 1.6 0.507 221 66.3 335 235 42.8 1300 191

9000 6.75 -0.1 6.85 0.456 8.5 25.5 197 17.7 7.8 8600 8
-0.2 6.95 0.463 9.8 29.4 213 19.2 10.2 8500 11
-0.25 7.0 0.466 10.4 31.2 220 19.8 11.4 8400 13
-0.45 72 0.480 13.5 40.5 255 229 17.6 7500 38
-0.65 7.4 0.493 17.2 51.6 291 26.2 254 6100 84
-0.75 7.5 0.500 19.5 58.5 313 282 30.3 5600 107
-0.85 7.6 0.507 221 66.3 335 30.2 36.1 1700 245

The calculation of the deformation of the bed is 0.4

carried out m table (Table 3). The function ¢, can be

written in form ¢, = kx, where in the example studied K = 92

10*E°. By writing C; in the Eq. 17 pennies forms: C, = 0 o N

kC/', one obtains: ¢, = ¢-C = ki(x-C N=-(,+C,); 02

from where: C, = ¢ +kC,'; where: 04

¢ = - ¢,- kx. By using this formula, one calculates the
deformation of the bed (Table 3) and the time of
deformation:

The variation of the coast of the bottom of the bed
according to time is represented on the graph (Fig. 7). On
Fig. (8) the deformation of the bed at the end of the
following periods of time is represented: t, = 20.10%s; t,=
5010%s;,=100.10*s and t, = 150.10"s.

Now let us examine the problem of the variation of the
level of the free face after erosion. For that, let us calculate
the value of;

m

o K (]
I K12 hl
K, 1s calculated for the average depth with the state initial
h,=7.2m.

Q%4 (4000)*.9000
Ay, 0,90

K, =16.10"
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Fig. 8 z=f(xt)
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Table 4:The lowering of the water level is proportional to theti meoferosion

z(m) y(m) y-z(m) £ yh_OZ oy —hy (B HE K oy t.10%(s)
-0.1 7.7 7.8 0.520 27.8 83.4.10 83.4.10° 380 -600 23

-0.2 7.66 7.86 0.524 29.8 89.4.10° 89.4.10° 395 -1100 43

-0.3 7.63 7.93 0.528 31.9 95.7.1¢° 95.7.10° 410 -1500 62
-0.4 7.59 7.99 0.532 34.1 102.3.10° 102.3.1¢° 426 -2000 85

-0.5 7.55 8.05 0.536 36.5 109.5.10° 109.5.10° 442 -2500 111
-0.6 7.52 812 0.541 39.7 119.1.1¢° 119.1.1¢° 463 -3000 139

After 150.10° s, the average depth is 7,8m, therefore:

3
K2 —16.1010(7’2J =20,34.10'%;, Ay :%QZ =
9.10° 4% 108
S =0,72m
20,34.10

instead of 0.90 m

Consequently, the lowering of the level of the free
face on the whole of the studied section, will decrease by
0,90-072 m = 018 m under the mfluence of the
deformation of the bed.

At the beginning of the section, this circumstance
mfluences the result of calculation and mvolves the
mcrease m the deformation of the bed. One remakes
calculation for the section x = 0, by considering that the
lowering of the water level is proportional to the time of
erosion (Table 4).

Calculations show that the surface of the bottom of
the bed is flattened progressively and tends to being
parallel to the level of the free face, i.e., the mode of flow
tends towards the permanent flow.

The examimed example explains sufficiently the
method of calculation of deformation of the bed of the
river in the various practical cases for the gradually varied
modes of flow.

CONCLUSION

This study was devoted to the flow gradually varied
m the rivers with a variable longitudinal profile and to the
deformations of these rivers in length and width. On the
basis of simplifying assumptions and by using the
method of the characteristics for the resolution of the
released quasi linear equations, we could lead to
convincing results such as the points of the highest rivers
and particularly the tops of the undulations formed by
sands move towards the downstream more quickly than
the points located low.

It 1s now proven that the camage of geochemical,
biological and geomorphological natural equilibrium or the
dynamic deceleration of the waves of floods passes by
the solution of very complex problems related to the non
stationary flows which are: knowing: - strong curves of
the surface profiles;

¢ Variations of speeds (maximum attacks at the time of
the flood) from a section to another of the channel;

»  Depths of flood and duration of submergence which
returns brutally or gradually;

+  Longitudinal profiles of the channels;

» The hydraulic parameters applicable to the
topography of the ground such as roughness or the
Manning-Strickler coefficient, etc...

The slowing of the flow consists precisely in using
fitting up solutions in order to slowing down the
propagation waves of flows and the effects mnduced by
these flows which are erosion (Boukrana, 1983), transfer
and deposit of sediments in one or the other part of the
chammel or the work of storage.
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