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Computer Simulation of the Concepts of Filling of the Mould by the Thermal Aspects
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Abstract: In order to fill the cavity with a mould, entering metal must have heat required. The reduction in the
temperature of the fluid passing by the system of release must be adapted in the treatment in order to make it
possible the liquid to completely fill the interstices of the mould. The use of the fluidity of the molten metal like
concept and variable of treatment to define the conditions of payment of metal was constant in the technical
literature. Basic tests are employed to determine this parameter of thermal transfer in liquid metal operations,
provided an occasion more particularly to define the behaviour of the molten metals in the moulds filled. These
concepts presented by researchers, consider the loss of temperature of the molten metal while 1t crosses the
system of release. The development of this model 1s based on a calculation of the loss of heat of the molten
metal are equivalent to a tube with the models of release of these systems which accentuate by the unstable
nature of the loss of heat reviewed. The computer simulation of this analysis was described by other
researchers. The development of a model of unstable state is given where the system of release is sumplified
with an equivalent tunnel of flow by material of the mould. Local flows of heat are a function of time and the
temperature of each metal increment can be given as soon as it enters the mould. The loss of heat in the system
of release is the first stage by determining a first distribution of the temperature in the mould for the computer
simulation of the concepts of solidification of the mould similar to those used to evaluate the loss of heat in the
system of release can be employed to determine the initial temperature in the mould on the achievement of the
filling of the mould. The incorporation of these concepts in the computer-aided design for moulds is necessary.
What relates to the molten metal, Holman for example presented an analysis for the loss of the temperature by
holding molten steel which 1s applicable to other metals. This review presented developments by quantitatively
evaluating the losses of heat in the filling of the mould. It would prove that the quantitative aspects of the
thermal transfer in the treatment of the molten metal were developed and checked in experiments. The current
task 1s to integrate these results and to install them in a system computerized for the design of the mould of
production. The fall of the temperature of the molten metal in the mould 1s taken mto account. Several concepts
and analyses having milked on the subject are presented. The use of the quantitative aspects in the evolution
of the simulation computer-assisted for the design of the components is recommended.
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INTRODUCTION

To face international competition, the founders have
a permanent precccupation with a profit of productivity
which is expressed by a will to gain in cost, time and
quality. In this context, simulation became for a number of
companies an essential tool. Tt indeed makes it possible to
represent physical phenomena that real casting will not
make it possible to highlight. Tt gives important
indications on the phases of fillings and solidification, like
on heat exchange moulds metal. At the stage of the
preliminary draft, this information will be analyzed in order
to optumnize and to validate the design of the tools. In

production, the software could be used in order to better
include/understand the appearance of the defects and
thus to cure it.

SIMULATION OF THE SOLIDIFICATION
OF THE ALPAX ON COMPUTER

We presented the thermal parameters which intervene
in a determining way during obtaining a casting. They
vary from a casting with another and make notable
modifications (Hentzel, 1996). These parameters are: -
Geometry of the part, which we characterized by the
thickness or the module of cooling:
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Materials constituting the mould and playing the part
of coolers.

The temperature of run alloy.

The physical properties thermo of materials used.

These last years, with the extension of the computers
one 1s interested largely in the mathematical models
llustrating at least correctly the phenomenon of study.
Also one sought some mathematical models, simulating
the solidification of certain metals, which
sufficiently mteresting for the practice of foundry.

seems,

Formulation of the problem: The simulation of
solidification, by using the computer and especially
mteresting, when it reproduces sufficiently reality,
because 1t also enables us to calculate several alternatives
without use of materials more often expensive at the time
of the realization of the tests (Hlinka, 1991 ). Tt enables us
to vary a factor, while maintaimng constant the different
ones, thus giving a better comparison and a facility of
interpretation. Our research of study with for objectives:

To seek the physical model of our part in
solidification, contaimng knowledge a priori.

To establish the mathematical model according to the
found model, for the determination of the thermal
parameters.

To transform the mathematical model mnto numerical
calculation.

To write the problem thus posed in language of the
calculating machine.

To adjust the program thus found, with the
experimental data.

To analyze the found results.

Determination of the physical model of the part in
solidification in the sand mould: We characterize our
plane part by the thickness 21 which is low of 4 times in
front of the length and the width. It 1s run in a mould
mfinite thickness (compared to that of the part).

In this case heat is evacuated in the mould especially
by large the with dimensions side ones of the part. Qur
choice 1s justified besides by the practice where it is
found that the totality of the castings can be regarded as
infinite plates from the thermal point of view. During
solidification, the temperature varies through the
thickness of the part and according to time, because heat
15 continuously evacuated part towards the mould. The
part is geometrically and thermically symmetrical and we
can consider the problem unilaterally.

Thus the problem arising consists with the
determination of the transitory field of temperature of the
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Fig. 1: Physical model of the solidification of the alpax in
the sand moulds with green, TS: Temperature of
solidification. TC: Temperature of the center of the
part Tin 1mtial temperature of metal or casting.
Y(t): co-ordinates of the face of solidification, TT:
Temperature of the mterface moulds-metal

part of solidification. To return mteresting the model and
to approach reality we bring some simplifications which
really take place during the process of the clothes
industry of the part with alloy of study:

Although our alloy presents a small interval of
solidification, one can practically regard it as a
eutectic solidifying at the constant temperature Tc.
The imtial temperature (or of cast) of the molten metal
remaing identical in any point of the part, just after
the filling of the mould and especially higher than the
temperature of solidification.

The field of temperature does not remain uniform:
The temperature of metal close to the interface
metal-mould is always lower than that of the center.
The solidification proceeds successively while
progressing towards the center and the face of
solidification can be considered flat (whereas actually
1t presents more or less regular asperities).
According to the experiments which we carried out
one can state these assumptions like valid. This
admitted, we present the physical model of the
solidification of our alloy 1 the sand mould at green
onFig. 1.
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Fig. 2. Stability of the system of finite difference

equations explicit [O=as/ (1) *]

The curve on the figure presents the distribution of
the temperature at the moment t, through the half-
thickness of the cast.

Figure 2 displays the results of the exact and
numerical resolution of the problem of no stationary
thermal conductivity for a plane wall divided into four
mtervals of time.

The influence exerted by Ax on the results of the
resolution can be evaluated according to the data
represented on Fig. 3. Curves I, IT and 1T correspond to
the solutions obtained by two, three and five nodes.

Determination of the mathematical model: For the
description of the process starting from the physical
model bench we can use the equation of the heat which,
1 its general form, binds the various variables which are
time, space and the temperature. With this equation we
can know the thermal mechanism i any point of the part
and any moment. For our unidimensional case, the
differential equation 1s written:

aT 9T 1 ow (1)
—=a . — t— —
ot X% cop Ot

W is the heat of solidification or that of the phase
shifts in a solid state. Actually these physical properties
thermo are varable according to the temperature, the
chemical composition, of the structure and even of the
pressure. But under our condition one can regard them as
constant bus:

*  The mterval of temperature that we study 1s weak.

¢+  The determination of these properties in the liquid
state, during solidification is not easy and gives
approximate results.

Table 1: Thermal characteristics and beaches of variation of alloys used in
our study
Thermal characteristics

Alloys A, Wim/°C o, Kem™ C, IKe/°C
ALPAX 85 2210 935
1265
2990 935
1265
138 2210 1265
935
2990 1265
935
Cast iron 25.5 5695 714
966
7705 714
966
34.5 5695 714
966
7705 714
966
Table2: Tnitial conditions
Alloys
Parameters Alpax Iron cast
Temperature of casting 650(°C) 1450 (°C)
Temperature of solidification 577 (°C) 1150 (*C)
Dynamic viscosity 2,5.10% (m’ s7™) 6.10°
Coefficient of compressibility 24.10° 24.10°
the step of space 0,01 (mm) 0,01 (mm)
The step of time 0.05 (%) (s)
Dimension of the part (50:;10; 10 mm (40:10:10)mm

The physical characteristics thermo of alloys are
given in Table 1.

To concretize the model, we must define the
conditions starting from the physical model. We can write
the following conditions:

Initial conditions and in extreme cases: To solve a
problem of transfer of heat, it is at any moment to
determine the field of temperature Ttx, y, z, ) and that of
the density of heat O (x, y, z, ) for that, it 1s necessary to
establish the equations of local heat balance and to write
the boundary Conditions Space and Temporal (which we
will note CLS and CLT).

It 1s obvious necessary to know the distribution of
the initial temperature T (x, y, z, O) to predict the evolution
of the studied system.

To facilitate the exploitation of the methods of
calculation we took the following imtial conditions
(Table 2).

METHODS OF RESOLUTION OF THE
PROBLEMS OF THERMAL CONDUCTION

The most employed are: analytical method,
numerical calculation and analogical methods. The
analytical resolution must as well check the equation of



Asian J. Inform. Tech., 6 (3): 411-417, 2007

120 150 180 210 240
Times T §

90

Fig. 3: Convergence of the numerical solutions according
to the size of the step following the co-ordmnate Ax

the conduction of heat as the boundary conditions
(Zeng and Pehlke, 2003). Tt is generally obtained with the
help of simphtying assumptions of which few problems in
practice lend themselves to it. This method has the
advantage of being easy applied when one has the
parametric representation. The analogical method consists
m studying the thermal process through a similar
phenomenon, in the case of the thermal field it 13 sumilar to
the electric field, the variable temperature is replaced by
the electric potential. There exist much of problems of
propagation of heat or the analytical solution cammot be
obtained; and it 1s then less expensive or would take less
time to obtain the experimental solutions in an analogical
system and to make an interpretation according to the
problem of the thermal flow. The numerical method, very
much used with the development of the electronic
computer electronic computers, is based on the solution
of a whole of algebraic equations, or differential equation,
by describing the equations corresponding to increase

fimshed.

Numerical methods: Tn the determination of a stationary
thermal field, most known 1s that known as of relieving, it
consists m dividing the part mto a number of finished
elementary volumes. For the problems of conduction in no
permanent mode the numerical method is different.
Because one must determine starting from a known mitial
thermal distinction, a field whose variation 1s a function of
time 1. The most known methods and which are largely
used are the method the finite differences and the finite
element method (variable field of temperature or not).

A finite element method: The principle consists in
dividing the field of study into areas limited by triangles
(or tetrahedron). One solves a system of algebraic

equations then approaching the solution of the
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differential equation. Tt became very widespread in many
problems of sciences applied. Its interest and its utility lie
in the manner of circumventing the difficulties skilfully,
especially daN the comprising parts of the complicated
forms. If for the method the fimite differences one
transforms the differential equation into ecuation with
increase finished, for that the finite element method which
1s also a method of approximation, one treats the solution
of the differential equation.

The linear interpolation for example in a metal plate is

X

writter:
X
t :[1 7 J.tl +[T}t2 =fit; + f,t,

Where f —(I—T} andf, —(T]

where Are the temperatures with nodes 1 and 2 when
one adds another center point one uses a higher degree,
because one with three nodes having t,.t,.t,
The function is here of the form:

(2)

t =a+bx +cx? 3)
Ifinx=0t, =t ett,=t_,ett;t_
One obtains
3x 2x? 4x 4x? 2x*
T 1 e VAP S PO e Y
12 1 12 1
The differential equation is then:
d*t (4 8 4 5
@_[l_z}tﬁ{_l_z}tﬁ[l_z}ts =0 (5)

This approach m this sinple example makes it
possible to obtain a good precision.

Methods the finite differences: As for the other methods
one divides the thickness of the part in areas in the center
of the which variable mode a content appears capacitive
corresponding to increased internal energy during an
interval of time.

The choice AT (or A x) limit however the imtialization
of the method as for the precision. and better will be the
precision of results until approaching the analytical
solution narrowly,

For values of 4 ranging between 0 and the 0.5 method
leads to results more precise than those obtained by the
explicit method.
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The equation with the mcreases fimshed compared to
that continuous comprises errors known as of
truncation (negligible to a certain extent).

The differential equation can then be replaced by a
linear equation:

tn+1 _tn 7\‘
x = St -2t b (an
AT cp.Ax’
2
(5 %J% e 20 ) (12)
(H _ \ePAX P 2+t (13)
oM AT Ax
cp Ax
(tgﬂ tn)T.E.AX— (teyg 2 Tty q)" 0D
nel 1 (Ax)® no (15)
[t tn)g. o~ 2t
t§+1:£2(x+l Dty Fty g ) LS (16)
(0 g 2 4t ! a7
1
B = fo (g + )+ 2(1-26) (18)

Requiring the resolution with each T a system
of algebraic equation with the use of a calculator.
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Finite difference equations explicit: For the resolution by
the method the finite differences of the one-dimensional
equation of thermal conductivity.

a1/t = ad*T/ A (19)

The derivative which appears in it is approximated by
the derivative to the finished differences.

aT/ar =T )/Ar aT/ax (T, - )/Ax

o o = (TF -1y /Ax

k ok ok ok K K ok
Tig -1 T -y | Ty -2 + Ty
Ax

Ax (ax)’
The analogue with the finished differences is then
form

PT_ 1
9x*

Ax

(Tik+1 :rik)/m - a(Tilfd TR+ Tik_l)/(Ax)2 (20)

The values of the derivative partial of the temperature
T compared to time and the temperature (compared to co-
ordinate x) are replaced m (20) by their approximate values
and the comresponding differences, by the fimished
increases. [n particular, Ax and are small mcreases n the
independent variables x and Ax is a step following the co-
ordinate; At a step following time).

To solve this equation, the temperature is calculated
only for isolated points T=1, 2,3,..., n, resting on the axis
of x; it is supposed whereas at every moment, the
distribution of the temperature in the interval between the
close points 13 linear, at the time of the resolution of the
problems multidimensional, these pomts are usually called
nodes of the space lattice. In the sunplest case, the
intervals between these pomts are equal between them
and with Ax the expression (11) must be considered as a
system of algebraic equations of which number N 1s equal
to that of the unknown temperatures. Indices k and k+1
define the moment to which the value of the temperature
corresponds is the value of the temperature at a certain
moment 7; T'the value of the temperature at moment
T+ At each finite difference equation contains only one
unknown factor. This temperature appears in node T after
the flow of the small interval of time .

It 13 supposed whereas the imtial temperature in each
node is T. The approximation with the differences which
has been just described 1s not the only possibility.

The Eq. 20 1s built according to the diagram with the
finished differences clarifies traditional and solves
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Fig. 4: Flow chart total of the program

without sorrow n an explicit form compared to the
unknown function. For the calculation of the unknown
temperatures T =, the system made up of » equations
algebraic of the type (20) is solved successively for
each step (sections) 1n the
calculation.

mterval of time of

When one carries out the first step in time and the
system (18) is solved for the first time, the values of the
mnitial temperature are drawn from the imtial conditions.
(According to the mitial conditions, the distribution of the
temperatures at moment T = 0 must be given.) In the
successive resolutions, the values of T are taken starting
from the previous section of time.

Stability of the system of finite difference equations
explicit: For the resolution of a system of finite difference
equation, the correct choice of and Ax are decisive
(Holman, 1981). By retaiming the diagrams with the explicit
finished differences, the size of the step in acceptable time
is limited and for the interior nodes it depends on the step
chosen according to the co-ordinate and the diffusivity of
material a = Afep.
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Figure 3 displays the results of the exact and
numerical resolution of the problem of nonstationary
thermal conductivity for a plane wall divided into four
intervals of time.

The comparison shows that calculations with
aAT/(Ax)’ = 1/2 provide perfectly satisfactory results,
whereas with aAt/(Ax)” > 1/2 the phenomenon of
instability appears. Tt is not related to the errors of district,
but results from the properties of the system of fimte
difference equations itself. By solving the Eq. (20) in an
explicit form compared to the function inconnue TF*! | its
obtains:

i (21)

= ATE, +BTF +CTF,

1

Where A = C = aAt / (Ax)’ ; B = 1- aAt / (Ax)%
Moreover A+ B+ C=1.

The advantage of the finite difference method implicit
lies in the choice of the mcrement and space without
particular constraints.

The unquestionable advantage of this method is that
each equation contains only one unknown factor which
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is the value of the temperature for t+At whereas that o is
supposed to be known or determined. Thus to avoid
wstabilities i the calculation of the field of temperature M
must be equal to or higher than two for this equation. The
difficulty compared to the explicit method is the resolution
of the system of algebraic equations obtained, especially
when the number of nodes 1s important. The use of a
calculator becomes necessary.

According to the flow chart (Fig. 4) one worked out
a calculation programme by the method the finite
differences. This program deals with two alternatives of
this method which are the implicit and explicit method. Our
program describes the stages of calculations of the
thermal field by the exploitation of the initial conditions
and the function of the temperature of mterface, as well as
under calculation programmes the speed of cooling,
viscosity and the various adimensional numbers.

CONCLUSION

According to the results which one obtained by the
program and their agreements with work of several
authors, one can confirm the effectiveness of simulation
by the mathematical methods with great confidence
interval. Thus one can conclude that the exactitude of the
results of simulations makes especially widen the field of
use of the software based on data-processing programs
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whenever one must vary several parameters severely
applicable in the laboratories of the various fields. Local
flows of heat are a function of time and the temperature of
each metal mcrement can be given as soon as it enters the
mould. The loss of heat in the system of release is the first
stage by determining a first distribution of the temperature
1n the mould for the computer sumulation of the concepts
of solidification of the mould similar to those used to
evaluate the loss of heat whose system of release is
employed to determine the initial temperature in the mould
on the achievement of its filling. The incorporation of
these concepts in the computer-aided design for moulds
1s necessary. Quantitative aspects of the thermal transfer
1n the treatment of the molten metal were developed and
checked. Several concepts and analyses having milked on
the subject are presented. The simulation assisted by
the design of the components

computer for is

recommended.
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