M Asian Journal of Information Teclmology 7 (1) 6-11, 2008
We]l

EAL . AT ¥ [SSN: 1682-3915
Online © Medwell Journals, 2008

A Cluster Based Load-Balancing Method for Multi-Computer Based
Solution-Adaptive Finite Element Graphs

'K M. Sakib, "M.H. Kamal and *U. Kabir
Institute of Information Technology, Department of Computer Science and Engineering,
University of Dhaka, Dhaka 1000, Bangladesh

Abstract: Load mnbalance can degrade the performance of a solution-adaptive finite element application
program on a distributed memory multicomputer. To solve the load imbalance problem load of a refined finite
element graph can be redistributed based on the current load of each processor. In this study, a load-balancing
algorithm 18 applied to balance the computational load of each processor. A distributed method for load
balancing 1s proposed which 1s based on the global load balancing information and current load distribution
of the system. A simulation model is developed to compare the performance of the proposed method with the
existing methods such as MCSTLB, BTLB and CBTLB methods. The execution time and the number of process
migration required by different load balancing methods are used for performance evaluation. The experimental
result shows that the proposed method 1s more efficient than that of the existing methods.

Key words: Distributed memory multicomputers, load balancing, solution-adaptive finite element graphs

INTRODUCTION

The finite element method is widely used for the
structural modeling of physical systems. In the finite
element model, an object can be viewed as a fimte element
graph, which 13 a connected and undirected graph that
consists of a number of finite elements. Each finite
element is composed of a number of nodes. Due to the
properties of computation-intensiveness and computation
locality, it is very attractive to implement the finite
element method on distributed memory multicomputers
(Angus et al, 1990, Fox et al., 1988; Simon, 1991;
Williams, 1990, 1991). In the context of parallelizing a
finite element application program that uses iterative
techniques to solve system of equations (Aykanat et al.,
1987), a parallel program may be viewed as a collection of
tasks represented by nodes of a finite element graph. Each
node represents a particular amount of computation and
can be executed independently. To efficiently execute a
finite element application program on a distributed
memory multicomputer, we need to map nodes of the
corresponding fimte element graph to processors of a
distributed memory multicomputer such that each
processor has approximately the same amount of
computational load and the commumnication among
processors 18 mimmized. Since this mappmng problem 1s
known to be NP-complete (Garey and Johnson, 1979),
many heuristic method were proposed to find satisfactory

suboptimal solutions (Barnard and Simon, 1994, 1995,
Ercal et al., 1990, Fiduccia and Mattheyes, 1982, Gilbert
and Zmijewski, 1987; Gilbert et al., 1995; Hendrickson and
Leland, 1995a, b; Karypis and Kumar, 1995 a, by
Kermigham and Lin, 1970; Simor, 1991; Williams, 1991).

For a scolution-adaptive fimite element application
program, the number of nodes increases discretely due to
the refinement of some finite elements during the
execution. This may result mn load imbalance of
processors. A node remapping or a load-balancing
algorithm has to be performed many times in order to
balance the computational lead of processors while
keeping the commumnication cost among processors as
low as possible. For the load balancing approach, some
load-balancing algorithms can be used to perform the load
balancing process according to the current load of
processors. Load-balancing algorithms are performed at
run-time; their execution should be fast and efficient.

In this study, a cluster based load-balancing method
has been proposed to efficiently deal with the load
imbalance problems of solution-adaptive fimite element
application programs on distributed memory
multicomputers. When nodes of a solution-adaptive finite
element graph were evenly distributed to processors
by some mapping algorithms, according to the
communication property of the fimte element graph, we
can get a processor graph from the partition. For example,
Fig. 1 shows a partition of a 21 -node finite element graph

Corresponding Author: K. M. Sakib, Institute of Information Technology, University of Dhaka, Dhaka 1000, Bangladesh

Asian J. Inform. Technol., 7 (1): 6-11, 2008

Fig. 1. A partition of 21-node finite element graph on 7
processors

Fig. 2: The corresponding processor graph of Fig. 1

on 7 processors. The corresponding processor graph of
Fig. 1 1s shown m Fig. 2. In a processor graph, nodes
represent the processors and edges represent the
commumnication needed among processors. The weights
associated with nodes and edges denote the computation
and the communication costs, respectively.

When a fimite element graph 1s refined during run-
time, 1t will result in load imbalance of processors. To
balance the computational load of processors, the Cluster
method first builds up clusters of processors. Based on
clusters, the global load balancing information 1s
calculated by the Tree-Walking Algorithm (TWA)
(Wu, 1997). According to the global load balancing
information and the current lead distribution, a lead
algorithm 18 performed to balance the
computational load of processors and minimize the
communication cost among pProcessors.

To evaluate the performance of the proposed
method, this method was implemented along with three
other tree-based parallel load-balancing methods, the

transfer

MCSTLB method (Chung and Liao, 1999), BTLB method
(Chung and Liao, 1999) and CBTLB method (Chung and
Liao, 1999). The experimental results show that the
execution tume and the number of process migration of an
application program under a cluster based load-balancing
method are always smaller than those of the other

methods.
THE PARALLEL LOAD BALANCING METHODS

The Maximum Cost Spanning Tree Load-Balancing
{MCSTLB) method: The main idea of the MCSTLB
method (Chung and Liao, 1999) is to find a maximum cost
spanning tree from the processor graph that is obtained
from the immtial partitioned fimite element graph. The
MCSTLB method can be divided mnto the following 4
phases:

Phase 1: Obtain a processor graph G from the mitial
partition.

Phase 2: Use a similar Kruskal’s (1956) algorithm to find
a maximum cost spanming tree T = (V, E) from G. There are
many ways to determine the shape of T. In this method,
the shape of T is constructed as follows:

» The processor with the largest degree in V 1s selected
as the root of T,

¢ For each nonterminal processor vin T, if {ul, ..., um}
are the m children of v and [ul | < [u2] «... < [um |, then
ul will be the leftmost child of v, u2 will be the
second leftmost child of v and so on, where [ut | 15 the
degree of ui and i =1, ..., m. If the depth of T is
greater than logM, where M 1is the number of
processors, we will try to adjust the depth of T. The
adjusted method 1s first to find the longest path (from
a terminal processor to another terminal processor) of
T. After the longest path is determined, the middle
processor of the path 1s selected as the root of the
tree and the tree 1s reconstructed according to the
above construction process. If the depth of the
reconstructed tree 1s less than that of T, the
reconstructed tree 1s the desired tree. Other-wise, T
1s the desired tree. The purpose of the adjustment 1s
trying to reduce the load balancing steps among
processors.

Phase 3: Calculate the global load balancing nformation
and schedule the load transfer sequence of processors
by using the TWA (W, 1997). Assume that there are M
processors 1n a tree and N nodes in a refined finite
element graph. We define N/M as the average weight of

Asian J. Inform. Technol., 7 (1): 6-11, 2008

a processor. In the TWA method, the quota and the load
of each processor in a tree are calculated, where the quota
is the sum of the average weights of a processor and its
chuldren processors and the load is the sum of the weights
of a processor and its children processors. The difference
of the quota and the load of a processor is the number of
nodes that a processor should send to or receive from its
parent. If the difference is negative, a processor should
send nodes to its parent. Otherwise, a processor should
receive nodes from its parent. According to the global
load balancing information, a schedule can be determined.

Phase 4: Perform load transfer (send/receive) based on
the global load balancing information, the schedule and
T. Assume that processor Pi needs to send m nodes to
processor Pj and let N denote the set of nodes in P1 that
are adjacent to those of Pj. In order to keep the
communication cost as low as possible, in the load
transfer, nodes in N are transferred first. Tf |[N| is less than
m, then nodes adjacent to those n N are transferred.
This process is continued until the number of nodes
transferred to Pj 13 equal to m.

The Binary Tree Load Balancing (BTLB) method: The
BTLB method (Chung and Liao, 1999) is similar to the
MCSTLB method (Chung and Liao, 1999). The only
difference between these two methods is that the
MCSTLB method 15 based on a maximum cost spanning
tree to balance the computational load of processors while
the BTLB method 1s based on a binary tree. The BTLB
method can be divided into the following four phases:

Phase 1: Obtain a processor graph G from the initial
partition.

Phase 2: Use a sunilar Kruskal’s (1956) algorithm to find
a binary tree T = (V, E) from G, where V and E denote the
processors and edges of T, respectively. The method to
determine the shape of a binary tree is the same as that of
the MCSTLB method.

Phase 3: Calculate the global load balancing mformation
and schedule the load transfer sequence of processors by
using the TWA.

Phase 4: Perform load transfer (send/receive) based on
the global load balancing information, the schedule and T.
The load transfer method i1s the same as that of the
MCSTLB method.

The Condensed Binary Tree L.oad Balancing (CBTLB)
method: The mamn idea of the CBTLB method (Chung
and Tiao, 1999) is to group processors of the processor

graph into metaprocessors. Each metaprocessor is a
hypercube. The CBTLB method can be divided mto the
following 5 phases:

Phase 1: Obtain a processor graph G from the initial
partition.

Phase 2: Group processors of G into metaprocessors to
obtain a condensed processor graph Ge incrementally.
The metaprocessors 1 Ge are constructed as follows:
First, a processor Pi with the smallest degree in G and a
processor P that 1s a neighbor processor of P1 and has the
smallest degree among those neighbor processors of Pi
are grouped into a metaprocessor. Then, the same
construction is applied to other ungrouped processors
until there are no processors can be grouped mto a
hypercube. Repeat the grouping process to each
metaprocessor until there are no metaprocessors can be
grouped into a higher order hypercube.

Phase 3: Find a binary tree T = (V, E) from Gc, where V
and E denote the metaprocessors and edges of T,
respectively. The method of constructing a binary tree is
the same as that of the BTLB method.

Phase 4: Based on T, calculate the global load balancing
information and schedule the load transfer sequence by
using a similar TWA method for metaprocessors. To
obtain the global load balancing information, the quota
and the load of each processor in a tree are calculated.
The quota is defined as the sum of the average weights of
processors i a metaprocessor Ci1 and processors in
children processors of Ci. The load is defined as the sum
of the weights of processors in a metaprocessor Ci and
processors in children metaprocessors of Ci. The
difference of the quota and the load of a metaprocessor 1s
the number of nodes that a metaprocessor should send to
or receive from its parent metaprocessor. After calculating
the global lead balancing information, the schedule is
determined as follows. Assume that m 1s the number of
nodes that a metaprocessor Ci needs to send to another
metaprocessor Cj. We have the following two cases:

Case 1: If the weight of Ci1 1s less than m, the schedule of
these two metaprocessors is postponed until the weight
of Ci1 1s greater than or equal to m.

Case 2: If the weight of C11s greater than or equal tom, a
schedule can be made between processors of Ci and Cj.
Assume that ADIJ denotes the set of processors in Ci
that are adjacent to those in Cj. If the sum of the weights
of processors in ADJ 13 less than m, a schedule 15 made to
transfer nodes of processors in Ci to processors in ADT

Asian J. Inform. Technol., 7 (1): 6-11, 2008

such that the weights of processors in ADJ is greater
than or equal to m. If the sum of the weights of processors
in ADT is greater than or equal to m, a schedule is made to
send m nodes from processors m ADJ to those in C.

Phase 5: Perform load transfer (send/receive) among
metaprocessors based on the global load balancing
information, the schedule and T. The load transfer method
is similar to that of the BTLB method. After performing
load transfer process among metaprocessors, a Dimension
Exchange Method (DEM) is per-formed to balance the
computational load of processors in metaprocessors.

THE PROPOSED CLUSTER BASED LOAD
BALANCING METHOD

The main idea of cluster based method is to construct
a arrangement of processors, where the processors are
combined into groups. After the construction of
processor group, the load information for each processor
is collected and the load balancing algorithm is performed
such that the processor can balance their load by
transferring minimum number of processes and the overall
load balancing time 1s also unproved.

Phase 1: Group construction.

Step 1: Divide N number of processors mto N/3 number
of groups. Tn a group there might be one or two or three
processors. In each case the group might be constructed
as following:

Case 1: If a group has three nodes, then one of them is
called the parent node and the other two are left and right
child, respectively.

Case 2: If a group has two nodes, then one of them is

called the parent node and the other 1s the left child.

Case 3: If a group has only one node, then it 15 the parent
node.

In each group the children nodes send their state
information to the parent node when they try to balance
the load.

If there is only one group, then go to Phase 3.

Step 2: Group three local groups to form a large group. In
this large group, one node acts as parent and other two as
left and right child, respectively.

This process of constructing large group 1s
continued until there is only one large group.

Phase 2: Load estimation

Each processor in the system has varying number of
processes and each process has varying amount of load.
To find the average weight or Quota of a processor we
first have to calculate the sum of loads of all processors
and then we divide the total sum by the number of
processors of the system. Thus we obtain the Quota for
each processor and from the Quota we calculate the high
threshold and low threshold value for each processor,
where

High threshold = Quota+x (where x = 5% of quota)
Low threshold = Quota — x (where x = 5% of Quota)
Now a processor's state 1s defined as follows:

Case 1: The processor is in normal state if its load is
greater than low threshold and less than high threshold.

Case 2: The processor 1s in underloaded state 1f its load
is below the low threshold.

Case 3: The processor 1s in overloaded state if its load 1s

above the high threshold.
Phase 3: Load distribution.

Step 1: In this level, for each group the group load and
the group quota 1s calculated. The group load 13 defined
as the sum of loads of each processor in a group, which
is not in normal state and the group quota is the sum of
the quota for each processor in the group, which is not
innormal state. From the group Quota, the high threshold
and low threshold 1s also calculated for the group. Now
depending on the group load and threshold values of the
group, the following two cases may occur.

Case 1: If the group load 1s greater than low threshold
and less than high threshold., then it 1s possible to
balance the load of the group internally. For each member
node of the group, the difference of quota and load 1s the
number of processes that a node should send or receive
from other nodes. If the difference is negative, a node
should transfer load, otherwise it should receive loads.

Case 2: If the group load is greater than the high
threshold value or less than the low threshold value, then
load balancing is not possible within the group. In this
case, the parent will contain the group load mformation.
If the load of all groups, in this level 1s balanced, then
the load distribution process is terminated. Otherwise
step 1 18 repeated until a lugher level large group exists.

Asian J. Inform. Technol., 7 (1): 6-11, 2008

Step 2: When the largest group is reached, the group load
1s distributed among the members of the group, which 1s
not in normal state. For each member node of the group,
the difference of quota and load 1s the number of
processes that a node should send or receive from other
nodes. If the difference 1s negative, a node should transfer
load, otherwise it should receive loads. Then, each group
of the next lower level distributes the load among the
processors of that group in the same way.

This process of load distribution 1s repeated until
any lower level group exists.

RESULTS AND DISCUSSION

This study compares the performance of the load-
balancing methods by implementing the algorithm with
some simulation programs. The criteria used to evaluate
the performance are execution time and the number of
processes to be migrated to balance the system load.

Comparison of execution time of different load balancing
methods: The execution tume of different load balancing
methods, with 7, 15, 25, 30 and 40 processors are shown
in Table 1.

From Table 1, it is notified that among MCSTLB,
BTLB and CBTLB method, the execution time of CBTLB
method is better than the other two. This is because the
CBTLB method can reduce the size of a tree with a large
ratio so that the overheads to do the load transfer among
the metaprocessors are less than those of the MCSTLB
and BTLB method. Thus it can reduce the load transfer
time efficiently. We also observe that the execution time
for the Cluster method is less than that of CBTLB method.
This is because the CBTLB method does not try to
balance the load within a metaprocessor after forming the
group. As a result a metaprocessor, which can be
balanced locally, is grouped into higher-level hypercube.

Table 1: The execution time in seconds of different load balancing method for
different load samples with different number of processors

No. of processes

Methods 7 15 25 30 40

MCSTLS 1.500549 1.500549 1.500549 1.500549 1.554396
BTLB 1.103846 1.10549 1.100000 1.154396 1.100000
CBTLB 1.500549 1.500549 1.500549 1.500549 1.500549
Cluster 0.659340 0.692308 0.714286 0.714286 0.714286

Table 2: Number of process migration of different load balancing method for
different load sampl es with different number of processors
No. of processes

Methods 5 7 10 25 30 35 40 45

MCSTLB 278 440 719 1270 1841 2370 3113 3550 4135 4562
BTLB 301 509 824 1460 2156 2937 2156 4068 4810 4204
CBTLB 432 782 1389 2286 3509 4426 5556 6617 7355 8126
Cluster 112 166 277 312 464 494 577 601 720 1223

10

This makes fruitless process transfer and thus takes more

time to balance the load. Though, in Cluster methods,
grouping 1s performed in each refinement, it takes less
time to balance the system load.

Comparison of the number of process migration of
different methods: The number of processes to be
migrated m different load balancing methods, in a system
with 5, 7, 10, 15, 20, 25, 30, 35, 40 and 45 processors are
shown in Table 2.

CONCLUSION

Different types of load-balancing algorithm for
solution-adaptive fimte element application program on
distributed memory multicomputers were proposed.
These are MCSTLB method, the BTLB method, the
CBTLB method and the Cluster method. In MCSTLB
method, BTLB method and CBTLB method, a logical tree
{(a maximum cost spanming tree for MCSTLB method, a
binary tree for BTLB method and a condensed binary
tree for CBTLB method) is constructed from a processor
graph. Based on the tree structure and the current load of
the system, an existing method tries to balance the system
load. But in those methods, the static nature of the logical
tree makes a huge number of process migrations, which
consume not only time but also the commurcation
network bandwidth.

In this study, a new, improved group-based method
is proposed to balance the load among the sites of a
distributed memory multicomputer system to overcome
the problems associated with the previous methods. In
this method, the processors are grouped so that the
members of a group can try to balance their load within
the group without knowing the states of the other
processors belongmng to a different group. Otherwise,
when balancing the load within the group is not possible,
this group tries to balance the load in a large group. Thus,
1in this method a process 1s migrated only then, when it
finds 1its sutable destination So the discussion
concludes that the proposed method requires fewer
process migration and less execution time than the
existing methods.

To evaluate the performance of the existing load
balancing methods and the proposed one, the algorithms
are implemented with some simulation programs. Two
criteria are execution time and the number of process
migration of different algorithms for an application
program is used for performance evaluation. The
experiment result shows that the execution time and
number of process to be migrated of the proposed method
1s better than that of the existing methods.

Asian J. Inform. Technol., 7 (1): 6-11, 2008

REFERENCES

Angus, 1.G.,, G.C. Fox, I.8. Kim and D.W. Walker, 1990.
Solving Problems on Concwrent Processors.
Englewood Cliffs, N.J.: Prentice Hall, Vol. 2.

Avkanat, C., F. Ozg|ner, 8. Martin and S.M. Doraivelu,
1987. Parallelization of a Fimite Element Application
Program on a Hypercube Multiprocessor, Hypercube
Multiprocessor, pp: 662-673.

Bamard, S T. and HD. Simon, 1995. A Parallel
Implementation of Multilevel Recursive Spectral
Bisection for Application to Adaptive Unstructured
Meshes, Proc. 7th STAM Conf. Parallel Processing
for Scientific Computing, San Francisco, pp: 627-632.

Bamard, S.T. and HD. Simon, 1994. Fast Multilevel
Implementation of Recursive Spectral Bisection for
Partitioning Unstructured Problems, Concurrency:
Practice and Experience, 6: 101-117.

Chung, Y.C. and C.J. Liao, 1999. Tree-Based Parallel Load
Balancing Methods for Solution-Adaptive Finite
Element Graphs on Distributed Memory
Multicomputer. IEEE. Trans. Parallel and Distrib.
Sys., 10: 360-370.

Ercal, F., J. Ramanujam and P. Sadayappan, 1990. Task
Allocation onto a Hypercube by Recursive Mincut
Bipartitioning. I. Parallel Distrib. Comput., 10: 35-44.

Fiduceia, C.M. and R M. Mattheyes, 1982. A Linear-Time
Heuristic for Improving Network Partitions. Proc.
19th IEEE. Design Automation Conf., pp: 175-181.

Fox, C., M. Johnson, G. Lyzenga, S. Otto, J. Salman and
D.W. Walker, 1988. Solving Problems on Concurrent
Processors. Englewood Cliffs, N.J.: Prentice Hall,
Vol. 1.

Garey, MR. and D.S. Johnson, 1979. Computers and
Intractability, A Guide to Theory of NP-
Completeness. San Francisco: Freeman.

11

Gilbert, IR. and E. Zmijewski, 1987. A Parallel Graph
Partitomng Algorithm for a Message-Passing
Multiprocessor. Int. J. Parallel Programming,
16: 427-449.

Gilbert, T.R., G.I.. Miller and S.H. Teng, 1995. Geometric
Mesh Partitioning: ITmplementation and Experiments.
Proc. S9th Int. Parallel Processing Symp., Santa
Barbara, Calif., pp: 418-427.

Hendrickson, B. and R. Leland, 1995. A Multilevel
Algorithm for Partitoming Graphs, Proceeding of
Supercomputing.

Hendrickson, B. and R. Leland, 1995. An Improved
Spectral Graph Partitioning Algorithm for Mapping
Parallel Computations. STAMJ. Scientific Computing,
16: 452-469.

Karypis, G. and V. Kumar, 1995. Multilevel k-way
Partitioning Scheme for Trregular Graphs, Technical
Report 95-064, Department of Computer Science,
University of Minnesota, Minneapolis.

Karypis, G. and V. Kumar, 1995. MeT1S-Unstructured
Graph Partitioming and Spares Matrix Ordering
System. University of Minnesota.

Kernigham, B.'W. and 5. Lin, 1970. An Efficient Heuristic
Procedure for Partitioning Graphs. Bell Sys. Technol.
I., 49: 292-370.

Kruskal, I.B., 1956. On the Shortest Spamming Subtree of
a Graph and the Traveling Salseman Problem. Proc.
AMS., 7: 48-50.

Simon, HD., 1991 . Partitioning of Unstructured Problems
for Parallel Processing. Comput. Sys. Eng., 2: 135-148.

Williams, R.D., 1991. Performance of Dynamic Load
Balancing Algorithms for Unstructured Mesh
Calculations, Concurrency: Practice and Experience,
3:457-481.

Williams, R.D., 1990. DIME: Distributed Irregular Mesh
Environment. California Institute of Technology.
Wu, M.Y., 1997. On Runtime Parallel Scheduling for
Processor Load Balancing. IEEE. Trans. Parallel and

Distrib. Sys., 8 173-186.

