Asian Journal of Tnformation Technology 7 (12): 510-515, 2008

ISSN: 1682-3915
© Medwell Journals, 2008

Process Model for Building Quality Software on Internet Time

Godspower O. Ekuobase, Francesca A. Egbokhare and Veronica V.N. Akwukwuma
Department of Computer Science, University of Benin, Benin, Nigeria

Abstract: The competitive nature of the software construction market and the inherently exhilarating nature of
software hinged the success of any software development project on 4 major pillars: time to market, product
quality, innovation and documentation. Unfortunately, however, existing software development models are
either a bunch of ponderous bureaucratic serial processes or unstructured set of agile processes. While the
former ensures appropriate documentation and quality of software product, it undermines the criticality of
mnovation and time to market, the latter holds time and inmovation in high premium but treats the issue of
quality and documentation as secondary. We therefore, lack but need a software process model that holds
these 4 success factors i high esteem. This study proposes, one such model-the MULTIPARL model. The
MULTIPARL model 1s a structured time driven model that ensures a software product 1s constructed and
delivered as increments of partial functionality. In particular, the MULTIPARL model stood out as the most
appropriate process model for web-based application development when it was subjected to the Omibere’s
process selection criteria alongside some active software process models.

Key words: Software, software development, software process, MULTIPARL maodel, development project

INTRODUCTION

Software engineering, a child of crisis, 1s still in crisis.
The continuous influx of radically distinct development
paradigms and process models mto the
engineermng domain 13 a pomter to the failures or
frustrations associated with existing ones. These failures
and frustrations have taken us back to where we started
unstructured set of development activities, which was
called cut and nail or code and fix and is now called agile
method. Whether software development 13 open or
closed; our (users and developers) expectations are yet to
be fully meant (Paulson ef al., 2004). The expectations of
software engineers and users have always been early
delivery of easy to use dependable software that is
economical.

A formal development structure 1s imperative to meet
these expectations (Omnibere and Ekuobase, 2006) and now
that several such structures exist, why the embarrassing
result on software products as unveiled by Paulson et al.
(2004). Ekuobase (2006) and Onibere and Ekuobase (2006),
reported increasing complexity in the engineering of
software products as well as the radically distinct nature
of software from other engineering products as a notable

software

source of the failures and frustrations associated with
the engineering of software products. An appreciation
of these account for the birth of the agile
approach to software development (Alliance, 2001,

facts

Abrahamsson et al., 2003; Aoyama, 1998, Cockburn, 2002)
but the pessimism about agile methods (McBreen, 2003)
1s critical. Miller (2001) and Ekuobase (2006), say the agile
processes will not do better than its predecessors. A little
wonder why Boehm (2002) and Boehm and Turner (2005)
demands for a mix of the rigid and agile software
development processes in the construction of software.
The rigid or traditional software processes (Sommerville,
1996; Scacchi, 2001; Ekuobase, 2004) is a bunch of
ponderous bureaucratic serial processes that can only be
suitable for the design, development, deployment and
maintenance of big and slowly adapting systems
(Cusumano and Yoffie, 1999, Griss and Pour, 2001). Worst
still, the present day software market which 1s driven by
mnnovation and time-to-market cannot tolerate these slow
and rigid traditional processes. The agile processes on the
other hand are characterized by modulanty, iteration,
parsimony, time-bound, adaptation,
delivery, convergence, people-centric and collaboration
(Miller, 2001) and can best be described by the agile
manifesto, which was signed in February 2001:

mcremental

we are uncovering better ways of developing
software by doing it and helping others to do it.

Through this research, we have come to value

» Individuals and interactions over processes and
tools

Corresponding Author: Godspower O. Ekuobase, Department of Computer Science, University of Benin, Benin, Nigeria

Asian J. Inform. Technol., 7 (12): 510-515, 2008

Working software over comprehensive documen-
tation

Customer collaboration over contract negotiation
Responding to change over following plan

That 1s while there 1s value m the items on the right,
we value the items on the left more (Alliance, 2001).

Ttems on the right define the traditional processes,
while items on the left defne pure agility. In practice,
items on the right are difficult to adequately consider,
if we actually want to go agile. As long as agile methods
treat formalized processes, planning and documentation
as secondary 1ssues as evident m the Agile Manifesto,
our tomorrow will experience worst crisis m the domam of
software development. The proponents of the agile
methods are only having transient successes today
because they were trained in the traditional way and
still have the traditional spirit in them, which their
so called better ways only help to modify but by the
time we have a new generation of software developers
trained and nurtured the agile way and unawares of
the traditional approaches we will experience a worst
crisis i software development than ever experienced,
for agile methods can easily degenerate into an
unstructured informal process as the code-and-fix
(Sommerville, 1996; McBreen, 2003), with all its inherent
problems.

Consequently, agile methods will need a formal
development process or structure that can enforce
planmng and comprehensive documentation, which are
critical to the dependability of a software product. Thus 1s
the essence of this study to propose one such Agile
software process model that enforces planning and
comprehensive documentation.

SOFTWARE CONSTRUCTION MARKET

First-to-market, mnovation, partial functionality and
incremental delivery, usability, product quality and
documentation,

First-to-market: The nature of the software market 1s
such that for any product to be useful, competitive or
more interesting, it must get to the market first
(Cusumeano and Selby, 1997; Cusumano and Yoffie, 1999,
Baskerville et al, 2001). The software product that
reaches the market first has the greatest promise for
capturing a wider explosion of interest. This applies not
only to new systems but also to new product features or
concepts 1n existing systems.

511

Innovation: This ensures continuous and competitive
relevance of a product in the market. It 13 not over when
a product s the first in the market, advanced features
must be continually developed and added to remain
competitive. Most of the notable successes in the
products of

software domain were mnovation

(Ekuobase, 2006).

Partial functionality and incremental delivery: Those
that waited to meet all the anticipated requirements of a
software product before shipment are today frustrated in
the software construction market (Cusumano and Selby,
1997; Baskerville et al., 2001). The market 1s such that you
get to the market as quickly as possible with what 1s
available, mteresting and useful and bring in nnovations,
bug fixes, performance and reliability improvements with
time though quickly too; before these lapses are exposed
by rnival software products or disaffection 1s created
among the users of the product. With this, more money 1s
made, while one maintains a competitive market position.

Usability: We like it or not, the user is the lord of the
software construction market (Ekuobase, 2006) and
decides, which product remain relevant or competitive in
the market. Unfortunately, however, their judgment is
based more on ease of use and the visible features of the
software product than on inert software qualities. The
reality 1s that a less powerful software product with
excellent usability attribute can dommate the most
powerful software product with poor usability features in
the market.

Product quality: The quality of a software product
remains the most dominant capability to remain relevant
inthe software market. Over the years, however, software
quality could not assume its priority position due to the
dynamics of the market. Successful developers under
played software quality by delivering products to the
market as releases; non-functional features as scalability,
reliability and security were gradually introduced or
improved with subsequent releases (Baskerville et af.,
2001). These developers inderstood some important facts
that the test of quality 1s a fumction of use time and only
noticeable by a minority for only a few instances within a
short period of use. They also understood that users
feedbacks are critical to the overall product enhancement.

Documentation: Documentation does not only enhance
conceptualization of product and its feasibility but also
allows for proper coordination, continuity and use of
staff, processes, tools and software product. Actually,

Asian J. Inform. Technol., 7 (12): 510-515, 2008

most aspects of documentation from requirement
specification to design and to other coding patterns as
mndentation and comments are purely techmical and
hidden. The impact of documentation though critical 1s
not felt in the market. Even the user manual 13 becoming
less useful as a result of the similanty and sunplicity of
mterfaces. Unknown to a few, documentation aids
software innovation, quality and the time-to-market in the

form of reuse, software components and patterns.
THE NATURE OF SOFTWARE

Software 1s not like other engineering products as
bridge, car or computer hardware (Sommerville, 1997,
Snowdon, 2003). Though, we knew early that software can
not be completely specified or built (Basili and Turner,
1975), we are yet to appreciate that software 13 one
product with fluid nature. The rate of change is a function
of need, domam, or drive. Today’s society 13 driven by
speed and comfort and software in response to societal
drive is today driven by ease of use and time-to-market.
Yesterday, it was driven by need and quality (Ekuobase,
2006) and tomorrow, it may be something else. What is
clear already is that its behaviour is always consistent
with that of the society. Also worthy of note is the
expected lifespan of software, 1t 1s supposed to out live
several generations; software though fluid has no tear
and no wear. This singular nature of software makes
proper documentation mdispensable;, at
continuity in maintenance.

Considenng the nature of software and the dynamics
of its market, we see that agile software development
process 1s not a replacement of the traditional processes
but has excellent features that can be used to upgrade
the traditional processes to meet modern challenges.
These features are basically speed and innovation
(Highsmith and Cockburn, 2001). A software process
model will however, not accommodate quick and regular
mnovations without it being flexible. In the followmng
study, we present a software model that incorporates the
features of the old and the new based on the nature of
software and the dynamics of the software construction
market.

least for

THE PROPOSED SOFTWARE PROCESS MODEL

The proposed software process model, the
MULTIPARL (MULTIple-PARallel.) model (Fig. 1) is a
disciplined time driven model that enforces incremental
delivery mn the form of multiple releases, feature
prioritization and slip, fluid specification and design, user

512

participation, process adjustment and technology
insertion that are essential for rapid development and
constant maintenance or enhancement of software
systems. The model is an infinite process and consists of
independent releases running in parallel with each
SUCCEeSsOr accommodating feedbacks
predecessor releases at convernient phases of its lifecycle.
The disciplined approach of this model is inherent in the
waterfall nature of each release, while flexibility (agility)
is enforced by feedbacks across releases, its fluid
specification/design and slip of features working against
time to appropriate phases of successor releases.
Feedbacks within releases allow for change. The different
releases of this model should be handled by different
development teams, which may not necessarily start at the
same time. Two to three teams may be 1deal; if any team
completes a cycle, they pick up a fresh release.

As shown in Fig. 1, each release consists basically of
four phases: preparation, build, Quality Control (QC) and
use phases. The preparation phase in turn consists of
three sub-phases or activities: requirement definition,
conceptualization and prioritization and fluid specification

and design activities.

release from

Preparation phase: This phase enforces formalized
planning and (external) documentation constrained by
deadline. Hence, the activities of feature prioritization,
fluid specification and design that allow for feature slip
or carryover to successor releases. The requirement
defmition sub-phase of the first release however, becomes
requirement review in subsequent releases. This phase
accepts feedbacks from any phase of predecessor
releases or the immediate successor phase (build phase)
within release and sees if they can be incorporated or
slipped to successor releases. The sub-phases of this
phase be simultaneously or repeatedly
implemented but the outputs of this phase are
comprehensive requirement and design documents.
Feedbacks can leave this phase to other preparation
phases of successor release.

The requirement defimition activities determine,
analyze (or review) and define the requirements of
individual systems The conceptualization
activities can be conceptual or concrete (prototyping,
say). In any case, it is aimed at determining/demonstrating
the criticality and feasibility of requirement features. This
set the stage for feature prioritization, specification and
design. Feature prioritization brings preference into the
requirements based on the dynamics of the market and the

can all

release.

time at hand such that requirements with low preference
may slip to successor releases. The final set of activities

Asian J. Inform. Technol., 7 (12): 510-515, 2008

1st release

nd release
Preparation phase ..mth release
Preparation phase -
—k\l"t lcfiniti : P! Preparation phase
: lization and » _ —k\R
k‘ feature pricritization <\ " {\ »
Fluid apecification featyre prigritizati
T and design Fhid specification Wl PO
and design Fluid specification
_q and design

Build phase

Build phase

{Quality control phase

Use phase

Fig. 1: MULTIPARL model

for this phase is fluid specification and design. By
fluid, we mean design in anticipation of change. The
model insists on comprehensive design document for
each release. This 1s possible particularly with the use
and continuous development of software patterns
(Fowler, 1997, 1999, 2002; Alur et al., 2003).

Build phase: This phase 1s concerned with the
implementation of the design document for each release.
It includes the activities of coding, component selection
and integration, sub system integration and testing. This
phase does not accept feedbacks from predecessor
releases except from the quality control phase within
release and is not allowed to communicate with external
releases. This constraints help check the excesses of
flexibility in agility. The output of the build phase is
working software.

Quality control phase: This phase ensures software is
built to specifications and approved standards. Its
activities also include quality assurance and acceptance
tests. It 1s responsible for passing the software for market.
Tt does not accept feedback from any phase or release but
can send feedback up within release and to successor
releases. The end product of this phase is certified
working software.

Use phase: This phase involves the actual use of the
certified and released software product. Here, feedbacks
(in form of bugs or user complaints/preference) are
collected and used to enhance/modify future releases. Tt
cannot accept feedbacks and does not send feedback up

Quality conirol phase

513

Use phase

within release. This phase ensures full user participation
in software development particularly after the initial
software release.

THE MULTIPARL PROCESS
MODEL IN PERSPECTIVE

The proposed MULTIPARL meodel though yet to be
put to real life use did not fall short of expectations m an
experiment with some selected active software process
models using the Onibere’s software process selection
criteria for Web based application development
(Ekuobase, 2004; Ombere and Ekuobase, 2006;
Ekucbase and Onibere, 2007). Table 1 is a recap of the
result of the experiment to establish the supremacy or
otherwise of the MULTIPART, model over currently active
software process models with details in Ekuobase (2004).
From Table 1, we see that this model 15 particularly strong
for medium to large scale software development projects.

Techmcally, one may not easily distinguish this
model from the evolutionary model but note that the
evolutionary model does not build software as releases
ie simultaneous construction of similar product in
different stages of development by varying team; in other
words, the evolutionary model can be seen as cyclic
single release of the MULTIPARI. model.

Tt is also important to note that this model will
definitely increase development cost but will drastically
reduce maintenance cost. Overall, it 1 more economical
since operational (maintenance) cost 1s usually twice
development cost (Sommerville, 1997).

Asian J. Inform. Technol., 7 (12): 510-515, 2008

Table 1: Appropriateness table of process models to web-based application development using the Onibere’s selection criteria (Ekuobase, 20040

Smmall scale projects Medium scale projects Enterprise projects
Process model Rank (%) POS. Process model Rank (%%) POS. Process model Rark (%) POS.
MULTIPARL 75.25 1st MULTIPARL 84.34 1st MULTIPARL 86.84 1st
Evolutionary 75.25 1st Spiral 79.52 2nd Spiral 78.95 2nd
Spiral 69.31 3rd Ewvolutionary 71.08 3rd Evolutionary 69.74 3rd
Prototyping 63.37 Ath Tncremental 65.06 Ath Reusable model 60.53 Ath
Incremental 61.39 Sth Reusable model 61.45 Sth Incremental 59.21 Sth
Reusable model 59.41 6th Prototyping 60.24 6th Prototyping 59.21 5th
Waterfall 55.45 7th Waterfall 46.99 7th Waterfall 52.63 7th
CONCLUSION Basili, V.R. and A.J. Turner, 1975. Tterative enhancement.

The dynamics of the software construction market
and the nature of software itself explain why both the
conventional (rigid) and agile software processes
cannot cope with the realities of quality
software development; since each underplayed on one

current

or more critical success factors of software development:
product quality, time-to-market, innovation and
documentation. Consecquently, a software process model
that gives sufficient attention to these success factors
was desired and proposed. The proposed model-the
MULTIPARL model-by Onibere’s software process
selection scheme will cope quite comfortably with the
of quality software development
particularly for the development of medium to large scale
software.

Tt is however, important that the novel software
process model be put to real life use or trial in order to
establish empirically the feasibility and strengths and
weaknesses of the model as was the case with other
models in existence today. On our part, this is already
ongoing for a Web based software development project
but this publication is necessary to allow for quick and
wide domam/project trial of this novel model. Time 15 not
on our side!

current realities

REFERENCES

Abrahamsson, P., I Warsta, M.T. Siponen and
J. Ronkamen T., 2003. New direction on agile
methods: A comparative analysis. Proceedings of
25th International Conference on Software
Engineering, TEEE Computer, pp: 244.

Alliance, A., 2001. Mamifesto for Agile Software
Development. http://www agilemamfesto.org.

Alur, D, J. Crupi and D. Malks, 2003. Core J2EE patterns:
Best practices and design strategies.
Microsysterms, pp: 650.

Aoyama, M., 1998. Agile Software process and its
experience. Proceedings of 20th International
Conference on Software Engineering (ICSE). TEEE
Computer, pp: 3-12.

Sun

[EEE. Trans. Software Eng., 1 (4): 390-396.

Baskerville, R., L. Levine, I. Pries-Heje and S. Slaughter,
2001. How internet software companies negotiate
quality. IEEE Comput., 34 (5): 51-57.

Boehm, B., 2002. Get ready for Agile methods, with care.
[EEE. Comput., 35 (2). 64-69.

Boehm, B. and R. Turner, 2005. Management Challenges
to Implementing Agile Processes in Traditional
Development Organisations. TEEE. Software,
22 (5) 30-39.

Cockburn, A., 2002, Agile
Addison-Wesley.

Cusumano, M. and R'W. Selby, 1997. How microsoft
builds software. Commun. ACM, 40 (6): 53-61.

Cusumano, M. and D. Yoffie, 1999. Software development
on internet time. IEEE Comput., 32 (10): 60-69.

Ekuobase, G.O., 2004. Scaling Process Models for Web
Based Application Development, M.Sc¢ Thesis,

Software Development,

Department of Computer Science, University of
Benin, Edo State, Nigeria.

Ekuobase, G.0., 2006. Software Creative Milestones,
Proceedings of International Conference
Advances m Engineerng and Technology,
Entebbe-Uganda, Elsevier, pp: 848-855.

Ekuobase, G.O. and E.A. Ombere, 2007, Software Process
Selection Criteria in Perspective. Int. I. Physical Sci.,
2(3): 81-89.

Fowler, M., 1997. Analysis of Patterns: Reusable Object
Models, Addison Wesley.

Fowler, M., 1999. Refactoring-Improving the Design of
Existing Code, Addison Wesley.

Fowler, M., 2002. Patterns of Enterprise Application
Architecture, Addison Wesley.

Griss, M. and G. Pour, 2001. Accelerating development
with Agent components. TEEE. Comput., 34 (5): 37-43.

Highsmith, J. and A. Cockburn, 2001. Agile software
development: The business of mmnovation. IEEE.
Comput., 34 (9). 120-122.

Ombere, EA. and G.0O. Ekucbase, 2006. Enhanced
software process selection criteria. J. Inst. Maths.
Comput. Sci, 17 (1): 17-32.

on

514

Asian J. Inform. Technol., 7 (12): 510-515, 2008

Paulson, J'W., G. Succi and A. Eberlain, 2004. An
empirical study of open-source and closed-source
software products. IEEE. Trans. Software Eng.,
30 (4): 246-256.

McBreen, P., 2003. Questioning Extreme Programming,
Addison-Wesley.

Miller, G.G., 2001. The characteristics of agile software
processes. 39th Proc. TOOLS, IEEE Computer,
pp: 365.

Scacchi, W., 2001. Process models in software
engineering. Encyclopedia of Software Engineering,
Joln-Wiley.

Snowdon, R.A., 2003, Overview of Process Modelling.
www.cs.man.ac.uk/ipg/Docs/pmover. html.

Sommerville, I., 1996. Software Process Models. ACM
Comput. Surveys, 28 (1) 269-271.

Sommerville, 1., 1997. Software Engmeermg, USA:
Addison Wesley.

515

