M Asian Journal of Information Technology 7 (3): 117-125, 2008
A SOVETY TSSN: 1682-3915
Online © Medwell Journals, 2008

Smart Health Application Implementation on Ul JavaCard Based Smart Card

Riri Fitri Sari and Donny
Department of Electrical Engineering, Faculty of Engineering, University of Indonesia,
Kampus Baru Ul Depok 16424, Indonesia

Abstract: Smart Card 1s a card with an embedded microprocessor inside the card. It can be programmed to create
application, perform task and store information. Smart Card has a protocol called Application Protocol Data Ut
(APDU), used to control data communication process. JavaCard is one of a technology in developing Smart
Card. JavaCard 1s based on Java programming language to create JavaCard application. Since, the year 2006
University of Indonesia has been distributed smart cards to the new students, m order to provide a better and
mtegrated services, using state of the art technology. The smart card 1s used for student’s identification with
biometric information, library card, attendance card, e-parking, university bike utilization, bus way utilization
and other facilities such as smart health application and e-wallet in the future. Until now the smart card has been
distributed to more than 40000 students. In this research, a JavaCard application called Smart Health has been
developed on the University of Indonesia's Smart Card. This application has 2 functions. First, to read medical
records from JavaCard and second, to write medical records into the JavaCard. Medical record which will be
saved in the JavaCard was split into 6 categories. Smart Health application has 3 main parts, JavaCard applet,
connector applet and terminal module. JavaCard applet is a program to control the reading and writing process
on JavaCard. It also, controls JavaCard memory allocation. Connector applet 1s an interface program to cormect
the TavaCard applet with the terminal module. Terminal module is a Graphical User Interface (GUT) module. User
interacts with the Smart Card application using this module. Performance analysis of this application focuses
on the JavaCard memory allocation, APDU role on data traffic, data process, memory optimalization and
application speed. In addition, we also analyze further development of this Smart Health application. The result
of the analysis shows that JavaCard applet programming, APDU arrangement to process operation and memory
allocation are the keys in building a JavaCard application.

Key words: Smart Card, JavaCard, APDU, Smart Health, medical record, memory allocation

INTRODUCTION

The main point in technology development 1s how to
make human life simpler. Modern human life 1s fulfilled
with many system and information. The information is
stored and could be accessed in need. As information
becomes more complex, there must be a procedure that the
mvolved m information access
efficiently, in terms of time, cost and security.

To reach that goal, some technology has been
developed and currently being implemented in our daily
life and one of them 1s Smart Card technology. The most
appending problem in using Smart Card is how to merge
1D card, ATM card, credit card and hospital card
functions, filled to a single card with all important
mformation (Surendrar, 2000).

Since, the year 2006 University of Indonesia has been
distributed smart cards to the new students, in order to

activities can run

provide a better and integrated services, using state of the
art technology. The smart card 15 used for student’s
identification with biometric information, library card,
attendance card, e-parking, university bike utilization, bus
way utilization and other facilities such as smart health
application and e-wallet in the future. Until now the smart
card has been distributed to more than 40000 students.
This study describes the creation of a Smart Card
application for the University of Indonesia’s smart card
(Guarddin et al., 2007).

Problem definition: In this project, a Smart Card
application called Smart Health has been developed. The
type of Smart Card used in this application is JavaCard.
JavaCard 15 a Java based Smart Card which uses Java
programming language to create applications. Our Smart
Health application worlks to keep the medical information
and has 2 main functions, i.e., to read medical records from

Corresponding Author: Riri Fitri Sari, Department of Electrical Engineering, Faculty of Engineering, University of Indonesia,
Kampus Baru UT Depok 16424, Indonesia

Asian J. Inform. Technol., 7 (3): 117-123, 2008

Physical characteristics
Magnetic stripe [2
(Back of card) —*
Contacts —» gri | |
Embossing. —— J,
Front of card

Fig. 1. Smart card physical characteristics (Chen and
Giorgio, 1998)

s

[ROM (operating
system)

RST N
CLK L/O CPU RAM
L/o system {temp storage)
vee > | [NVM/EEPROM|
(application
storage)

\

Fig. 2: Smart Card elements (Surendran, 2000)

JavaCard and to write medical records into the JavaCard.
Medical record which will be saved in the JavaCard has
been split into 6 categories. The application also includes
personalization of the Smart Card holder. This stduy also
presents the Smart Card application design and
implementation, as well as the performance evaluation of
the system.

Smart Card has a computer chip or microprocessor
mside. This card can be programmed to do some task and
store information. Card Acceptance Device (CAD), such
as card reader, 1s needed to comnect the card and a
computer. There are 2 types of Smart Card, namely,
Intelligent Smart Card and Memory Card. Intelligent Smart
Card has the ability to read, write and calculate. Memory
Card is used only to store information (Surendran, 2000).
Figure 1 shows that Physical Characteriscs of a smart
card.

Smart Card elements: Smart Card has four main elements,
Central Processing Unit (CPU), memory, mput/output and
Interface Device (IFD). Generally, Smart Card CPU 1s an 8-
bit microcontroller. There are three types of memory inside
Smart Card: Read Only Memory (ROM), Electrically
Erasable Programmable Read Only Memory (EEPROM)
and Random Access Memory (RAM). Smart Card
operating system and basic software are stored in the
ROM. The EEPROM is used to install and run the
application. The RAM 1s used to perform calculation
process. Figure 2 depics the elements of a smart card.

118

! Mandatory header "aonmtmn;] BB'&';!

[[Cata fekde

LA s er w3 }

Iz

Fig. 3: Command APDU (Chen and Giorgio, 1998)

Response APDU
Conditional body | Mandatory trailer
Data field SW1 [[swa

Fig. 4: Response APDU (Chen and Giorgio, 1998)

Application Protocol Data Unit (APDU): Application
Protocol Data Unit (APDTU) is a command message which
is sent from the application layer to the Smart Card and
response message being sent from the Smart Card to the
application layer. Commurication between Smart Card and
card reader is performed using APDU message. An APDU
can be considered as a packet data which contains a
complete mstruction or a complete response from a Smart
Card. There are 2 kinds of APDU, Command APDU and
Response APDUL

Smart Card always waits for a Command APDU from
a terminal. It then executes the action specified in the
APDU and replies to the terminal with a Response APDU.
Command APDUs and Response APDUs are some
information being exchanged between a card and a
terminal (Di Giorgio, 1997). Figure 3 shows the command
APDU, whereas Fig. 4 shows the response APDU.

JAVACARD

JavaCard 15 a kind of Smart Card which 1s capable to
run Java based program. By using Java, creating Smart
Card application will be much easier. The programmer can
make the application using Java Card Virtual Machine
(JCVM) dan Application Programming Interface (APIL)
inside the JavaCard (Hartanto, 2007).

The JCVM is built on top of a specific Integrated
Circuit (IC) and native operating system implementation.
The JCVM layer hides the manufacturer's proprietary
technology with a common language and system
interface. The Java Card Framework defines a set of
Application Programming Interface (API) classes for
developing Java Card applications and for providing
system services to those applications (Chen, 2000). Tava

Asian J. Inform. Technol., 7 (3): 117-123, 2008

card applications are called applets. Multiple applets can
reside on one card. Each applet 13 identified wuquely by
1ts Application Identifier (AID) (Chen and Giorgio, 1998).
Figure 5 shows tha JavaCard architecture.

SMART HEALTH APPLICATION DESIGN

JavaCard applet: JavaCard applet is a Java based program
which uses javacard framework library. This library
contains Application Programming Interface (API) that
supports the making of a JavaCard applet. The principal
i making a JavaCard applet is how to control the APDU
traffic for reading and writing process in the JavaCard. All
operation mside JavaCard is performed using APDU
(Di Giorgio, 1998).

JTavaCard applet has one class named PKMApplet
with some methods: TnitializePTN(), install(), process(),
setData(), sendData(), resetData(), getRecordLength(),
sendAddData() and setAddData() (Chen, 1999).

These methods are used to control the application
operation. The operation includes mstallation process,
PIN arrangement for data security, reading and writing
process between the termmal and JavaCard and the error
handling of the application (Surendran, 2000).

First process in the JavaCard applet 1s the installation
and selecting applet. If the user wants to read medical
records stored in the card, the applet will take the data
from the memory. If the user wants to write medical
records, the PTN must be initialized to start the writing

session. Then the writing operation can be done. After
that, the session will be closed. Reading and writing
process for the persconal data use the same mechamsm
(Fodor and Hassler, 2005). Figure 6 shows the Java Card
Applet Activity Diagram.

Connector applet: Commector applet 1s an applet that used
to connect the JavaCard applet with the terminal module.
Connector applet has one class named PKMApplet
Comnector and filled with some methods: openWrite
Session(), closeWriteSession(), getMedical Record(), set
MedicalRecord(), getRecord Length(), get AddData(),
setAddData() and close Applet(). These methods will be
the connector of the input and output traffic between the
terminal and JavaCard.

G | G

Industry add on calsses '
T

\ /

Fig. 5: JavaCard architecture (Chen and Di Giorgio, 1998)

-

(Membm d;ta medisJ (Menulis data medﬂ @embaca data pribadi tamba.hma Eﬂemﬂis data pribadi mmbahaa

h 4
tialize PIN

Reset PIN

Fig. 6 JavaCard applet activity diagram

Send data ()

Send add data ()

'Intia.lize PIN 0'

Set add data ()

Reset PIN ()

Asian J. Inform. Technol., 7 (3): 117-123, 2008

Sat medical record ()

Close applet O

Close write session ()

Close applet ()

Fig. 7. Connector applet activity diagram

[]

tialize PIN ()

lose applet (}

edu.yi.smartcard.terminal. module.pkm

Fig. 8: Smart Health terminal module class diagram

In the connector applet, the operation begins with
selecting the applet PKMApplet by checking its AID
inputted by the user. If the user wants to read medical
records, the connector applet will send a Command APDU
to the card and the data will be taken from the JavaCard
memory. If the user wants to write medical records, the
PIN must be validated to begin the writing session. After
the writing operation is fimshed, the session will be
closed by resetting the PIN. Then, the applet PKMApplet
will be closed. Reading and writing process for personal
data use the same mechanism. Figure 7 shows the
connector applet activity diagram.

Insert medical reord View medical record
-NULL_TEXT: string = "-" -NULL_TEXT: string = "-"

“Set null variables(y Medicel record : string
-Enable field() -Ambil data mahasiswa()
-Ambil data() -Ambil medical recored(}
+Card inserted() ~Inisialisasi record(}
+Card removed() -Updste tampilan record()
-Submit Btn action performed{) +Card inserted(}

+Card removed(}

-Set null variables()

+Action performed()

120

Terminal module: Terminal module is an end user
application to executes the Smart Health application. The
terminal module is a Graphical User Interface (GUT) which
consists of 2 parts, InsertMedicalRecord module and
ViewMedicalRecord module. In the other word, Smart
Health terminal module is a Java package contains of 2
class inside the package, InsertMedicalRecord class and
ViewMedicalRecord class. Figure 8 shows the class
diagram of the Smarth health Terminal module.

System integration: Smart Health system has three main
components, the JTavaCard applet, the connector applet

Asian J. Inform. Technol., 7 (3): 117-123, 2008

Modul terminal

Membaca data
pribadi pasien

Membaca data
medis pasien

Menulis data
medis pasien

Fig. 9: Smart Health use case diagram

Modul Applet Applet
terminal connector mhsUL
Membaca data pribadi
Select applet ()
Get data pribadi ()
o Response APDU + data pn'ban?
Data pribadi
Close applet {)

Fig. 10: Read personal data sequence diagram

and the terminal module. This components interacts one
another and become the main requirement in making the
Smart Health system. Without one of the component
mentioned above, then the system will not work. The
system integration 1s performed by wrapping the three
main components mto one Java Project.

The Smart Health application serves the user by
providing the card holder’s personal data, read his/hers
medical records and write his/hers medical records. From
the user side, Smart Health application 1s an easy to use
application because the application only need few actions
from the user. The user only need to input the JavaCard
into the card reader and then the user can read or write
medical records by accessing the field at the terminal
module. Figure 9 shows the use case diagram of our Smart
Health system.

Smart Health application contains 2 parts, reading the
medical records and writing the medical record. To
perform this 2 tasks, the applications must pass through
three steps of activity. First, reading the personal data
from applet MahasiswaUIApplet. Second, reading the
additional personal data from the applet PKMApplet.
Third, writing the medical record to the applet
PKMApplet. Figure 10 shows the Sequence diagram or
reading personal data.

121

Modul Applet Applet
terminal connector PKM applet
> Select applet()
Get add data(}
ﬁm‘p(mse APDU-dala pribadi
Data pribadi ! ik
™ Membace data medis |
* (et medical record()
Response APDUdata medis
Data medis
o~ Close applet()
I
1

Fig. 11: Read medical record sequence diagram

Modul Applet Applet
terminal connector PKM applet
Membaca data medis
Select applet(}
Open write session() f
Set medical record() ;"
Response APDU
% Close write session()
Close applet())

Fig. 12: Write medical record sequence diagram

The reading medical records process has some
sequence to complete the operation. First, the terminal
module will send a command to the connector applet to
get the personal data from the JavaCard memory, inside
the applet PKMApplet and the applet Mahasiswa UL
Applet. Personal informations which is taken from the
memory are the name, NPM, arganization code, date of
birth, sex and blood type. Figure 11 and 12 show the
sequence diagrams of read and write medical record
processes.

The next step is reading the citizenship and marital
status information from the applet PKMApplet. After
getting those data from the JavaCard memory, the last
step 18 to read the medical records.

The medical records writing process also has some
sequence to complete the operation. The first step is to
get the personal data (name, NPM, organization code)
which are stored in the JavaCard memory, inside the
applet MahasiswaUTApplet. The next step, after the
medical record is written in the terminal module field and
submitted, the writing session will be started and then
called the wniting method After the applet accepts a
response from the JavaCard that the medical record
has been stored, the writing session will be closed. The
last step, the terminal module will tell the user through a
dialog box.

Asian J. Inform. Technol., 7 (3): 117-123, 2008

SMART HEALTH IMPLEMENTATION

The keys of making a JavaCard application are the
JavaCard applet programming and how to arrange the
APDU to process and executes the operations of the
application. The JavaCard applet is an integral part in
making the application because the objectives are to store
and read medical records from the JavaCard. To aclieve
the objectives, the need to arrange a good APDU format
becomes important. The APDU format is used to control
the reading and writing process so the operations will be
done perfectly.

Smart Health could store up to 20 medical records and
2 additional personal data. Every medical record was
divided into 6 parts, mstitution, Doctor ID, date,
anamnesis, diagnosis and therapy.

The amount of memory needed as a storage media of
the data above are 340 bytes for every medical record and
16 bytes for the additional personal data. The detail of the
JavaCard memory allocation could be seen in Table 1. The
total amount of memory needed to store all the data is
6816 bytes.

Below, the data flow of the Smart Health operation
will be described. The writing process has two data flows,
personal data flow from the JTavaCard applet to the
terminal module and medical data flow from the terminal
module to the JavaCard applet.

In the personal data flow, the terminal module
instructs the connector applet to access the JavaCard
applet which then retrieves data from the JavaCard
memory through APDU. The comnector applet retrieves
this data from the APDU then stores it in the dataPribadi()

TavaCard. The data presented in the data() array is copied
and filled in the APDTU]. Through the APDU, the medical
data 1s then transferred to the JavaCard’s memory, at the
medicalRecord() array.

The medical data retrieval process has three data
flows, i.e. personal data flow, additional data flow and the
medical data flow from the JavaCard applet to the terminal
module. In the personal data flow and the additional data
flow, the terminal module instructs the connector applet
to access the JavaCard applet, which then retrieves data
from the JavaCard’s memory through the APDU. The
comnector applet takes this data from the APDU and then
stores it in the dataPribadi() and the dataTambahan()
array. Both these arrays will be accessed by the terminal
module and presented mn the user interface. Figure 13
shows the data flow diagram of write medical record
process.

In the medical data flow, the terminal module gives
instructions to the connector applet to retrieve medical
data stored in the JavaCard applet. The connector applet
accesses the JavaCard applet, which then retrieves
medical data from the JavaCard’s memory through the
APDU. The applet comector takes this data from the
APDU then stores in the dataMedis() ar ray. The terminal
module will then access this array and divide it based on
available medical data categories, stored it in the medical
Record() array and finally displayed it in the terminal
module field. Figure 14 shows the data flow diagram of
read medical record process.

Table 1: JavaCard memory allocation detail
Data category JavaCard memory allocation (byte)

. Institution 20
array. This array will be accessed and finally displayedin = pogorm 12
the terminal module. Date 8
In the medical data flow, data which 1s filled in the g‘i’:;:’]‘;:ff }gg
terminal module 1s stored by the commector applet in the Therapy 100
data() array. Then, the connector applet instructs the Citizenship 15
TavaCard applet to write the medical data into the Martial status 1
T“'“']’i‘i”;i Applet JavaCard: | [Responce APDU| | Applet conector| | Terminal:
mennilis ta = oot data pribadi() [| get data pribedi() + data pribadi data pribadi[] [| settext()
\.
~ "
| Terminal: get Applet connector: Applet connector: L, Applet JavaCard
* text (). get bytes() datal] set medical record() set data()
o [B
¥
Applet JavCard:
medical record[]

Fig. 13: Write medical record data flow diagram

122

Asian J. Inform. Technol., 7 (3): 117-123, 2008

- ~N 7N 7 ™
Terminal || Applst JavaCand: | [Responce APDU] | Applet conneotor [Terminal:
m"“mdis get data pribadi) + data pribadi data pribadi[] sot toxt()
. AN A/
4 N 7 ™
Applet connector: Applet JavaCard Responee APDU| | Applet connector: Terminal:
| getadddam() getadd data O + data pribadi data tambehan(] set text{)
| P R
Applet connector: Applet JavaCard: Response APDU Applet connector:
get Medical record() send data () + data medis + data medis
Terminal: | | Terminal:
set text() medical record[]

Fig. 14: Read medical record data flow diagram
SYSTEM PERFORMANCE EVALUATION

JavaCard memory allocation: The Smart Health
application was developed using a Fix Length system
where the maximum length of data which will be stored in
the JavaCard memory 1s predefined and restricted to that
maximum length (Table 2). Memory allocation for data
storage on the JavaCard, depicted on Table 3, is
considered adequate for representing a medical data
record. Yet, some weaknesses arise from the usage of this
Fix Length system.

The first weakness is when the length of data filled
mnto the JavaCard 1s below its maximum. This condition
causes void spaces in the JavaCard’s memory which leads
to memory inefticiency. Sections, which will likely caused
memory inefficiency are the anamnesa, diagnose and
therapy since the length of medical data for these sections
can hardly be predicted. The second weakness 1s that
when data filled into the JavaCard exceeds the maximum
capacity determined. Tncomplete data will be written to the
JavaCard, causing missing information when data is
retrieved from the JavaCard. Figure 15 shows the memory
usage diagram.

The most relevant solution for tackling these
weaknesses 18 by using Dynamic Length system in
programming the application. Dynamic Length system
insists that a program being developed must be able to
detect the length of data being stored in the JavaCard.
Data length 1s not restricted to a certain maximum length,
so every bit of information can be stored. To separate
data, special characters are used. On retrieval of data from
the memory, the program will read the data strored in the

Table 2: Fix length svstemn efficiency
Memoty usage

Wasted menory (%o)

20 medical records @ 280 byte 17.61

20 medical records @ 250 byte 26.41

20 medical records @ 220 byte 35.21

Table 3: Data comparison before and after compression

Data before Data after

compression compression Percentage
6800 byte 4127 byte 60.7%
6000 byte 4136 byte 68.93%
5500 byte 4039 byte 73.44%

TavaCard, until the special character is read. Thus,
memory inefficiency and missing mformation can be
avoided; optimal memory usage can be achieved.

Data compression: The Smart Health application uses
6816 b of TavaCard memory to store twenty medical data
records and additional personal data records. Every
medical data has a size of 340 b and additional data 16 b
which means 6800 b total is needed for all medical data
and 16 b total for additional personal medical data.
Memory calculation described above uses an assumption
that every character inserted has a 1 b data length.
Therefore, every medical data has a 340 character
maximum length and a 16 character maximum for additional
personal data.

Memory usage in the JavaCard 1s still open for
further optimization by using data compression. With data
compressior, data size stored will be smaller since every
character will need less than 1 byte of space. This leads to
even better memory efficiency m the JavaCard. To
implement the data compression, an additional library is
needed as a tool for executing the data compression
process. Compression is done at the connector applet,

123

Asian J. Inform. Technol., 7 (3): 117-123, 2008

JavaCard memory usage, 5000 b data

26.41%

73.59%

Fig. 15: Memory usage diagram using 5 kB data size

@ Data 1 before compression
H Data 2 before compression
O Data 3 before compression
O Data 4 before compression
W Data 5 before compression
O Data 6 before compression

6800

0

Data
Fig. 16: Data comparisen diagram before and after
compression

which processes data array from the terminal module
before stored in the JavaCard. In the data retrieval
process, data taken from the JavaCard by the connector
will be decompressed before being diplayed in terminal
module. Figure 16 shows the comparison of the data
before and after the compression.

JavaCard processing speed: The (erformance of the Smart
Healh application is tightly related with the processing
speed of the JavaCard. In medical data retrieval, the
process done by the application is accessing the personal
data and medical data stored in the JavaCard’s memory.
All data stored in this memory is read one by one, then
displayed by the terminal module. In this process, the
processing speed of the JavaCard will determine the
overall performance of the application. The speed of
JavaCard’s microcontroller determines how fast the data
retrieval process will be. As an example, data retrieval
using JavaCard of the University of Indonesia’s batch
2006 students needs about 20 sec. Using the JavaCard of
the University of Indonesia’s batch 2006 students, data
retrieval time decreases to 12 sec. This means that the
TavaCard UT 2007 performance is 40% better than the

124

TavaCard UT 2006. Thus, the overall performance of the
Smart Health application greatly depends on JavaCard’s
processing speed.

CONCLUSION

The making of a JavaCard application consists of
three steps, JavaCard applet programming, connector
applet programming and building the terminal module.
JavaCard applet 1s an integral part in making the
application and determines the continuity of the whole
application operation. Connector applet 1s an applet that
is used to connect the JavaCard applet with the terminal
module. The main issue in making a JavaCard application
are the JTavaCard applet programming and how to arrange
the APDU to process and execute the operation of the
application. JavaCard memory allocation are also the main
consideration to optimize the use of the JavaCard memory.

FUTURE WORK

Problems and limitation of this system has been
described. Development of this system can be started
from rechecking those problems so the performance of the
application could be improved.

The Smart Health application can be improved in the
future by applying the Dynamic Length system which can
significantly improve the memory efficiency. Other than
that, it is also expected that development of future
applications implement data compression methods which
even have greater impact on memory efficiency.

The scope of the Smart Health application could be
broaden with the incorporation of a medical data record
printing menu and with the integration of this application
with database systems of certain health mstitutions
through Web Service mterfaces.

ACKNOWLEDGMENT

We thanks Ad Yumarto, Gladdi Guarddin, Jan Peter
and Dimas, for their contribution and discussion on the
wider implementation of UL Smart Card program.

REFERENCES

Chen, Z. and R.D. Giorgio, 1998. Understanding Java Card
2.0. Learn the inner workings of the Java Card
architecture, API and runtime envircnment.

Chen, 7., 1999. How to write a Java Card applet: A
developer's guide, Leamn the programming concepts
and major steps of creating Java Card applets.
http:/fwww javaworld. com/javaworld/jw-07-1999/ w-
07-javacard html.

Asian J. Inform. Technol., 7 (3): 117-123, 2008

Chen, 7., 2000. Java Card™ Technology for Smart Cards:
Architecture and Programmer’s Guide. Addison
Wesley.

D1 Giorgio, R, 1997, Smart cards: A primer Develop on the
Java platform of the future. www javaworld. com/jw-
12-1997/yw-12-javadev html

Di Giorgio, R., 1998. Smart cards and the OpenCard
Framework, Learn how to implement a card terminal
and use a standard APT for interfacing to smart cards
from your browser. http://'www javaworld.com/
avaworld/jw-01-1998/jw-01 -javadev .html

Fodor, O. and V. Hassler, 2005. JavaCard and OpenCard
Framework: A Tutorial. Information Systems Tnstitute,
Technical University of Vienna.

Guarddin, G. et al., 2007, http://smartcard. w.edu..

Hartanto, A.A., 2007, Telknologi SmartCard dan Impian
di Masa Depan. http://bebas.vlsm.Org/v11/refindl/
physical/SmartCardDream.rtf,.

Surendran, D., 2000. Applications of Smart Cards.
http://people.cs.uchicago.edw~dinoj/smartcard/arch-
1.html.

Surendran, D., 2000. Elements of Smart Card Architecture.
http://people.cs.uchicago.edw/~dinoj/smartcard/
Jearch-1.html.

Surendran, D., 2000. Java Cards. ttp://people.
cs.uchicago.edu/~dinoj/smarteard/JCarchl html

125

