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Pulse Mode Neural Network Implementation for Handwritten Digit Recognition

Alima Damak Masmoudi, Mohamed Krid and Dorra Sellami Masmoudi
Computers Imaging Electronics and Systems Group (CIELS), ICOS Research Unait,
University of Sfax, Sfax Engineering School, BP W, 3038 Sfax, Tunisia

Abstract: This study describes a new pulse mode artificial neural network (PNN) implementation based on
floating pomt number format. For on-chip leaming operations, the back-propagation algorithm 1s modified to
have pulse mode operations for effective hardware implementation. By using fleating point number system for
synapse weight value representation, any function can be approximated by the network. The convergence rate
of the learmng and generalization capability is improved. The proposed network is applied for digit recogmition
application. The recognition approach is based on a series of features, which are at most independent of
orientation and position. The most important featurea are based on Zernike moments. However, an exclusive
use of Zernike moments in digit recognition increases tremendously the neural network size, since higher orders
are needed to ensure best recognition rates. Moreover, given their geometrical mvariance, Zernike moments
give the same description to some different digits such as 6 and 9. Thus, we make use of other features based
on structural descriptors witch are the terminating point number and the terminating location mumber which is
orientation dependent. This features based presentation of the digits reduces the required Zemike order and
the number of lndden layers and adds a great simplicity to the design, making possible the on-chip learning
umplementation for online operations. The proposed PNN 15 implemented on a Virtex I FPGA platform. Various
experiments are carried on for design evaluation.

Key words: Pulse mode, synapse multiplier, floating point operation, handwritten digits, zermke moments,
endpoint detection, FPGA implementation

INTRODUCTION

Although most applications of neural networks are
carried out using software simulators, many other
potential applications require large, ligh-speed networks
umplemented in efficient custom hardware, which can fully
use the inherent parallelism embedded in neural network
dynamics.

Spiking neurons depart from traditional connectionist
models in the sense that the information is transmitted by
the means of pulses (or spikes), rather than continuous
mode neurens. This may allow spiking neurons to have
richer dynamics and to exploit the temporal domain to
encode or retrieve information in the exchanged spikes.
Hardware implementations of spiking networks may bring
benefits such as very low power consumption.

One of the effective approaches to carry out the
neurological networle material execution is the architecture
based on pulse mode operations (Reyneri, 1995). Many of
these architectures present an elegant and compact
solution (Marchesi and Orlandi, 1993; Lehmann et al.,
1993) over early continuous mode solutions (Krid et al.,

2005). By coding data in the frequency domain, pulse
mode operations are based on simple frequency
multipliers rather than the conventional overshooting
multipliers, used in contimious mode neural networks.
Such compact solution offers an important feature to
pulse mode neural networks with respect to on-chip
learming applications. Owing to their advantages, they
acquire nowadays a growing importance in neural
network implementation (Maeda and Tada, 2003
Martincigh and Abramo, 2005).

A pulse mode digital architecture has been proposed
in Moon et al. (1992) and Ikenaga and Ogura (1998).
Taking advantage of the compactness of the solution
proposed by Hikawa (1999a), in a multiplierless
architecture 1s applyin (Damak et al., 2006, Krid ef al.,
2006) which the synapse 1s made up witha Direct Digital
Frequency Synthesizer (DDFS) and the neuron uses a
nonlinear adder. The limitation of this approach is that the
weight range of the synapse multiplier 1s limited between
-1 and 1, which makes learming difficult, especially in
networks with high input resolution. Indeed, given one
neural network architecture, universal approximation
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features of newal networks states that there exists a
tanber of hidden layers for witch weights can be
adjusted to meet any ingot-outport relation. However,
there is no nde specifiring the weights range. G enerally,
high weight walues arige from high data resolution.

Toa certain exterd, this weight range limitation was
solved by using newons with adjustable nonlinesr
activation fanction (Hikawa, 199900 Steeper nonlinesar
activation function has the sane effect as the larger
weight waue has Howewer, some neursl network
applications still require much larger synaptic weights In
Hikawra (20007, the pul se tmode neural netw otk based on
floating poitt operation iz preserted Cwing to pulse
mode operations, a simple programmable frecuency
cotrverter can be used instead of the modtiplier. Pulse
signal is used to wpdate the weight walues. Weight walue
in the floating point format is stored in a special up-down
countter so that the synaptic weight can be wpdated
eadly.

In this stady, the proposed system uses simple
floating poirt mamber to represent the synaptic weight
values. An improved synapse it is proposed withmat
atwy igh hardar are cost. Using floating point operati ons,
synaptic welghts cover a wery wide range thus providing
PHN applications withhigh peecision.

Harwherritten digit recogritionhas been an active atea
of tesarch and developtm erd fot ot least two decades. The
hatichrriting iz ote of the moost familiar commutdcation
media Fen based interface combined with antomatic
hatdarriting recognition offers a wety easy and naturd
ingnt method (Owuhadj ef ol 1999,

In this study, we applied the proposed PHM to a
handwrritten digit recognition learning application This
approach is based on Fermke momerts (Bhotler and
Mixorn, 2006). Forbestrecogrition high order moments
ate required, which increases tremendously the newrsl
netarork size, statingthe uze of more hardware resources.
Moreover, as with regular moments, some forms of
inrvarisnce in Zernike motherts may be a disadvantage in
recognition snce, for instance, dgits “67 and “97 are
distingushable ooy by direction. Thus for those
reasong we were seeking other features, for the use of
more compact implemerntation. In ow model nebrork
irgnats are accordingly the different feabires and the
outpnat is a binary wvector describing the corresponding
digit. The model is constructed by using a two-layer
fniewrd network. For traiming and geteralization test, a
hatubwritten digit data bage of eighty samples was used.
The whole system iz implementad o oa wirtex 1T field
ot ogratmm ahle gate array (FPGA) platform and the neuron
characteristics are tested experitm entally inFig 1.

192

0 24819 3
EES%@ 1158 q%
‘lG 24.50 'S

O ?*\Sazwsﬁ

Fig 1: 3 ame data base sanples

OVERVIEW OF THE DIFFERENT DIGIT
RECOGNITION FEATURES

The objective of handwritten digt recognition is to
develop a system which approaches the hwman capacity
inreading The recognition took a rea take-off while being
implied it severd technological sectors. In this study, we
present an improved method for handwritten digit
recogrition using Zenike moments and other discrete
structiral descriptors such as the terminating point
marher and the terminating locati on umber.

Implementatio no fzermile momenis: Implem entation sep
of Zernike moments are illustrated in Fig 2.

Binarieation: Binary images are typicaly chtained b
thresholding a grey lewel ithage Binay images are
guattized to tero vaues, vsudly denoted by 0 and 1, bt
oftern with pixel walues 0 and 255, representing tlack atd
white shownin Fig 3.

Segmentation: The registered and preprocessed irgpot
data has to be subdivided into subparts to create
mearingful entities for classificaion. This stage of
processing i called segmerntation It may either be a
cleatly separate process or tightly coupled with the
previous or following processes. In either case, after the
pattern recognition system has completed the processing
of a block of data, the resulting segmertation of the data
canbe revealed,

We hawve segmerted our data bage by subdiving into
different connexe regons For each region a set of
properties are computed such as certrod, area, mimdmal
bounding box, ete.. Then based on these properties, each
CONeY e teglon is represented separately.

Red imensionning: The size of the data is subject to a
normalizaion of height and width The normalization is
based on the principles of under-sampling or  owver-
sampling shownin Fig 4.
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Gray level image

Binarieation

Segmentstion

Zernlke moment

Fig. 2: Implementation of Zernike moments

Fig. 3: Example of an image (a) and its binarisation (b)
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Fig. 4: Example of an image (a) and its segmentated and
redimentionned included digits (b)

Skeletonization: A skeleton of an image can be used as
a starting point for feature extraction. The skeletonisation
process, also known as thinning or Medial Axis
Transform is by itself problematic regarding both the
computational aspects and the potential uniqueness of
the result. Figure 5 shows a handwritten digit of image
example and its skeleton.
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Fig 5: Example of a digits image before and after
skeletonization

In the context of handwritten digit recognition, the
goal of the thinning process is quite obvious: the trace of
a pen spreading ink while moving on a paper should be
recovered from the final image. Moreover, thinning 1s a
kind of normalization, aiming at increasing Zeninke
moment sensitivities for better recognition. The average
line width can be estimated prior to thinning and that
information is used in skeletonisation. Alternatively, the
average line width can be estimated affer thinning if the
information is needed in further processing. Vectorization
15 a step that commonly follows skeletonmisation. In
vectorization, the pen trace is represented with a small
number of linear line segments known as strokes.

Zernike moments: Zernike moments are based on a set of
complex polynomials that form a complete orthogonal set
over the interior of the unit circle (Khotanzad and Hong,
1990). Zemike moments are defined to be the projection of
the image function on these orthogonal basis functions.
Complex Zernike moments are constructed using a set of
complex polynomials which form a complete orthogonal

basis set defined on the unit dise (x* + v') 2 1. The
Complex Zemike moments are defined as:
1
A, =TE4TL Ly O

where, m =0, 1, .., = defines the order. While, n 15 an
integer (that can be positive or negative) depicting the
angular dependence, or rotation, subject to the conditions

ey

—|n| = even, =i

The Zemike polynomials V., (x, ¥) expressed in polar
coordinates are

V,, (1, ) = R, (r)e™ 3)
where, (r, 8) are defined over the unit dise, j= —1 and
R (1) 15 the orthogonal radial polynomial, defined as:
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Zetnike moment can be very relevant in digit
recogritioty They owee theit petformances to their rotation
and translation irsrariatice properties. Howewer, such
itrratiatice leads to some lmitations in dissociating “67
atwl “97 digits In thiz stady, we will cons der terminating
points detector for the seek of non irrrariant deseriptors.

Terminating points hased features The endpoint roynber
iz an estination of terminating poirds (Lot ef &, 19810,
Figwre T shows for illustration a handwritten digit 717
which endpoints  are swrowndsd  Onee  endpoint
extracted the following descriptors canbe compated.

The numher of terminating points N2 The endpoint
toumber is closelyrelatedtotopologica characteristics of
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Fig 7: Endpcirts of digit™1”
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digits. Often, its iz specific. Ever though the reslts can
fiot e wiigue, it is always bounded and can be predicted

The number of texminating point bocation IN; : Acowate
location of the endpoirts is important for relishle and
robust digt recognition. Besides, location in the yapper
or lowrer half of the image are invan ant for some & gts and
can be used for dissociating 6™ and 97 (Fig ).

Let 3 ¥, be coordinate of the i® ends of the dceleton
and XY _be coordinate of the half of the image. Since,
digits 6 and 9 are the onlywhich hawve a unique endpoint,
we carry ot this dgorithun for distingy shing them from
each other:

£ (e = 1) and (¥, » X
then I, =1

eleef (M, =17 and X = 2

then M, = 2

elee bl =0

etud

THE WHOLE NEURAL NETWORE

Fot each digit sample, the walues 6th order of Zernike
moments, M_(z=1, ., T, the terminating poitits manber
Ny and the location mamber M, are computed The
description based on these feabwes is used in the
tecognition step as newa network irgoats, The applied
tietwrotk architectore is tepresentadin Fig 9.
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Fig. 9: The applied network architecture

This network was trained with the data base samples
using the backpropagation algorithm.

The backpropagation training algorithm: The
backpropagation traimng algorithm 1s basically a steepest
descent method that searches for optimal weight values
to minimize the error E,, between the network output and
the target. The procedure 15 the following:

First guess an initial weight w% q = 0, where g
denotes the current traimng iteration number.

Find JE /w, which is the derivative of E with
respect to w.

Find the change of weights to give smaller E,, by the

steepest:
O _(w
Aw* :—ni‘*( )‘W:Wq (6)
ow
where 1s the learmng rate.
e Update the weight w" to w*' as:
w™ = w' L Aw? (7

Repeat steps (11) to (1v) until JE (w)/Ow = 0, which
means that you are at the bottom of the valley, where
is the solution.

For the output layer, the quantity JE (w) 0w in Eq. 6
can be easily calculated by taking the derivative of E, with
respect to the weights w of output layer, while JE, (w)/0w
for the weights in the lndden layers requires the use of
chain rule to backpropagate the error signal obtained in
the output layer to the hidden layers.
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Table 1: Generalization error for different Zernike orders with ten hidden

layers
Number of Zernike mormnents The proposed
Zernike moments as inputs feature vector
4 0.9103 0.532
[ 0.7642 0.152
8 0.6844 0
10 0.3641 0

Table 2: Generalization error for different hidden layer number with Zernike

order of six
Number of Zernike moments The proposed
the hidden layers as inputs feature vector
5 0.8871 0.057
7 0.766 0.014
10 0.6301 0
20 0.2565 0

To be able to evaluate the effectiveness of the
traiming, one can measure the relative error as following:

_ 2.(,-Target)
Number of samples

(8)

where, I, is the image resulting from network output and
Target 1s the bmary immage. Indeed, using this pulse
network can lead to very low error rates.

Generalization rate results: After traimng step,
generalization error was evaluated for different feature and
network conditions. Table 1 illustrates the generalization
error for different Zernike orders with ten hidden layers. In
case of Zemike moment feature based, for Zernike orders
smaller than 6, the network error remains high, even
though increasing the number of hidden layers to 20
(Table 2). Besides, Table 1 shows that considering
endpoint based features give satisfactory results, from an
order of Zermke moments of six. For this order, simulation
results of the network error for different ndden layer
numbers 15 illustrated in Table 2. From this table, we ca
notice that increasing the network size beyond ten, can
decrease significantly the error.

Indeed, reconstructed digits from 6 order Zermke
moments illustrated in Fig. 10, show that it is hard
distinguishing the difference. That’s the use of endpoint
features makes discrimination easier and reduces the
network complexity.

Figure 11 and 12 show training and generalization
error evolution for different Zermke orders and different
Hidden Layers, respectively. Accordingly, an optimum
choice of Zermike order can be done emsuring a
compromise between low network error and compact
network.

In the present study, the proposed feature vector will
be implemented as a pulse mode neural network mputs for
handwritten recognition.
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Fig 10 Reconstruction of digits from their sivth order
Zertike coefficients
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HARDWARE IMPLEMENTATION ON
ASVIRTEXII PLATFORM

I thiz research, we present the proposed newa
fietwork baged hatwerritten recogniti on with floating point
form &t operati otis.

Mantiom (3 bim) —*

Fig. 13: Floating poitit bitary formoat

Pulse mod e neural netw orkh loc architeciures
Representation of sigchak with floating point format:
Floating poirt 15 a mametic interpr etation system inwlich
a string of digits (or bitd) represents a red manber
Floating-poirt format is uwsed here to represent the
sytaptic wedghts in the see of urilimited r ange operati ons,
it iz dlustratedin Fig 13,
The adopted format is as follows:

(Sigm * 2oew==wbiof | nanti ssa )

With
shift=2"'- 1 (107

where, nisthe mamber of bits dlocated tothe exponent.

Synapse wunit: In the smapse it newon outpot is
multiplied by a smaptic weight. As the proposed netwrork
uses frequency to represent the signal lewels, the
multiplier is replaced by a frequency corwerter using
floating point oper ati orns.

Exponert (W_ ) has p bit and martissa (W_) has g
bit length Block diagram of the synapse unit is depicted
inFig 14

Figare 15 showsthe block diagram of the proposed
synapse multiplier. Each weight is divited into n, bits
which are modtiplied by the corresponding pulse it
using simple AWND gates. These outpats are concdenated
to have a n-bit signal  representing  the  weight
multiplication w,, I, The total sum of the weight valuesis
the product of the signal lewel by the weights,

Neuron unit: The sigmoid function is by far the most
comtmon form of transfer function in Newral N eturorks.
Howewer, the design of this fimction on platform is
expensive. In deed several possibilities exist to design the
ggmoid fonction "We rcan use its polynomia
approximation This solution can be expensive i
cotnputiti tithe atd in slicon aea To avod this
commplexity, we cantnancate it to an arbitrany precision by
a judicious piecewrize litear appro it ation (Haylin, 19097
ot uge alookiyp table placedin a ROM (Peng ef of , 19997,

The notilinesr activati oo funetion is appr o imoated by
a mun of three wed ghted ramp fonctions. It is given by the
fellowitig ecpuation
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Fig. 15: Block diagram of the proposed synapse multiplier
3 2 1
((H) = 26, (H)+26, () £, (H) (D)

where, H 1s the internal potential in the neuron which 1s
the product of the sum of weight values h and the average
frequency F.

H=hF (12

Each ramp function can be expressed by the
following equation.

1 it H>p,
H .
pr(H): ﬁ+5 if *pjiHipJ (13)
i

0 otherwise

where, p, (j =0, ..., 2) is the control parameter of the slope
of the ramp function.

The block diagram of a single ramp function neuron
is depicted in Fig. 16. Figure 17 shows the transition of the
register value and neuron output.

Each period T}, the sum of input weight values from
synapse multipliers I, is fed to the register where it is
accumulated. When the content of the register R 1s
positive, p, is subtracted from it, otherwise it is added. The

Tl ™
)
»1d0 pla
d1 ath R
= P Rogister
L[ g sub —p load
at+b Clk
I
_’ b
I B
a>=h
=g e Oupu
R: The content of the register
Fig. 16: Ramp function neuron
R f=f, £=0.5¢,
h Ll
@
1M1 O A0 [ I
oo o U O 1p o

GLnnunnnnnmnnnnn __________ nnin

Fig. 17: (a) Evolution of the register in the ramp function.
(b) Neuron output

output pulse of ramp function 1s generated with a
frequency equal to the frequency of the clock £,
Afterwards, the content of the register altemate positive
and negative and the gradient of the change is p;.

The time spent by the register to approach zerois T,
later on, the frequency of the output becomes 0.5 * £,
Hence the average frequency of the neuron ramp function
1s given by the following equations:

Tp+(T, — T )*0.5
P (fT ) if H>0

f (14)
T.—T)*0.5
(pr) if H<0

f

£ (H) =

1=0,..,2
where T;and T are given by:

(15)

(16)
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Fig. 19: Block diagram of one neuron umt comected with
N synapse umits to characterize the activation
function

By substituting Eq. (15), (16) and (12) mn (14), we
obtamn an activation function with a shape of ramp
function described in Eq. (13).

To obtain the weighted sum of three ramp functions,
a 8ix to one multiplexer is used. Figure 18 shows the block
diagram of the neuron to get the proportions indicated in
Eq (11).

For 6 clock cycles of the counter, the first ramp
function 1s selected three tumes, the second ramp is
selected twice and the third one 1s selected once.

To characterize the neuron’s activation function, we
have implemented one neuron umt comnected with a
certain mumber than ten of synapse units as shown in
Fig. 19. The weight values are expressed in 12-bit signed
fixed-point format. We use frequency converters to
generate pulsed mput signals from numeric values
expressed in six-bit signed fixed-pomnt format (nb, = 6).
Both weight values and input frequencies are randomly
set. The period T, that should be left for correct
propagation of signals is expressed by (17).

T;=2%in an
RESULTS
Activation function characterization:  Unlike
stochastic neuron, the ramp function neuron isn’t

affected by the mumber of input signals and weight
range. Figure 20 represents the activation function of the
neuron with 6 inputs. This figure shows measurement
results of ramp function neuron with different parameters
pG=0,.,2)

The same configuration shown mn Fig. 19, excepting
the ramp function neuron which is replaced by the neuron
unit, is used to plot the piecewise linear activation
function for more control of the neuron.

Figure 21 shows the slopes of the piecewise
activation fimetion with different number of mputs. The
activation function curves are very close to theoretical
expressions of sigmoid function.

Synthesis results: The proposed multilayer neural
network was implemented on FPGA VirtexIT platform. The
precision of the synapse weight values is expressed in 9
bit precision.

Table 3 describes the device utilization summary after
design synthesis. We can note that the proposed
architecture uses less than 50% of hardware resources
of the target FPGA so it can be applied in larger
networks. Compared to conventional architectures, a
much more
Masmoudi, 2005).

Table 4 summarizes the device tining. The maximum
frequency that can be reached is 101.256 MHz and the
minimum peried 15 9.876 ns. Smce, the proposed
architecture is undertaking in fully parallel operations, this

compactness is obtained (Krid and

value decreases in proportion to the network scale.

For validation and test, a series of digits data base
was used. Each digit for the data base has a generalization
error that doesn’t exceed 4.34%.
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Fig. 21: Characterization of the neuron unit with six mput
signals for different combinations of p,

Table 3: Device utilization summary

Number of external IOBs 8 out of 248 3%
Number of RAMB16s 8 out of 44 18%
Number of SLICEs 839 out of 4928 17%
Number of BUFGMUXs loutof 16 6%
Table 4: Timing summary

Minirmum period ©.876 ns
Maximum Frequency 101.256 MHz
Minimurm input arrival time before clock 2.911 ns
Maximum output required time after clock ©.094 ng

CONCLUSION

New digital architectire of pulse mede neural
network applied to handwritten digit recogmtion with
floating point operations was proposed. This approach is
based on Zernike moments and endpoint descriptors. The
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improved architecture proposes an efficient method to
accurately compute feature vectors for best recognition.
The hardware complexity i1s reduced by detecting the
mumber of endpoints and the number of terminating
points location. The activation function uses floating
pomt operations while providing the same performance
as conventional architectures, leading to wmlimited
weight range operations. Feasibility of the proposed
architecture was verified by computer simulations.
Moreover, the proposed architecture was implemented
ona Virtex [I FPGA platform. Simulation results show that
the proposed neural good learning
performances.

network has
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