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Abstract: In this study, the authors propose an algorithm of intelligent search using vague theory of Gau and
Buehrer. The objective of such research is to deal with the imprecise data involved in different kinds of existing
searching techniques mn a more efficient ways and thus to suggest a new unproved version of searching
technique under uncertamnty which will be helpful in many real life problems of computer science, specially in
AT, in Data Mining, in fuzzy DBMS, etc. to list a few only.
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INTRODUCTION

The study of search problem is very common in
computer science. Al i1s one of the many fields in wlich
search 13 an important topic. We search a file, we search
a directory, we search for a character in a file, we search
an item in a link list etc., are few of mfinite number of
searching done in computer. There are various methods
of searchung like Depth-first search (DFS), Breadth-first
search (BFS), Hill Climbing, Beam search, Best first search
existing in the literature. Each method has got
independent merit of its own to address different types of
searchung in different situations. All existing searching
techniques are not always based on precise data.
Consequently, to deal with uncertainty in searching, we
feel that non-classical logic that fuzzy logic and/or vague
fuzzy logic will be the appropriate tool.

In this study, we propose an algorithm of intelligent
search using vague theory of Gau and Buehrer (1993). The
objective of such research 1s to deal with the imprecise
data involved m different kind of existing searching
techniques in a more efficient ways and thus to suggest
few improved version of searching techniques under
uncertainty which will be helpful in many real life
problems of computer science specially in Al

Preliminaries of vague set theory of Gau and Buehrer
(1993): With different aims and objectives, different
authors from time to time have made a number of
generalizations (Dubois and Prade, 1990; Kaufmann, 1975;

Zimmermarm, 1991) of Zadel’s (1965) fuzzy set theory. Of
these, the notion of Vague theory introduced by Gau and
Buehrer (1993) is of interest to us.

In most cases of judgments, evaluation 1s done by
human bengs (or by an intelligent agent) where there
certainly is a limitation of knowledge or intellectual
functionaries. Naturally, every decision-maker hesitates
more or less, on every evaluation activity. To judge
whether a patient has cancer or not, a doctor (the
decision-maker) will hesitate because of the fact that a
fraction of evaluation he thinks in favour of truthness,
another fraction in favour of falseness and rest part
remains undecided to him. This is the breaking
philosophy in the notion of vague set theory introduced
by Gau and Buehrer (1593). In this study, we introduce a
notion of vague algebra by defining vague groups of a
group, vague normal groups and study some properties
of them.

We present now some preliminaries on the theory of
vague sets (VS). In his pioneer research, Zadeh (1963)
proposed the theory of fuzzy sets. Since then it has been
applied in wide varities of fields like Computer Science,
Management Science, Medical Sciences, Engmeering
problems etc. to list a few only.

LetU={u,u,...... , 1.t be the universe of discourse.
The membership function for fuzzy sets can take any
value from the closed interval (0, 1). Fuzzy set A 1s defined
as the set of ordered pairs A = { (u, u, (u)) ue U}, where
K (1) 18 the grade of membership of element u mn set A.
The greater i, (u), the greater is the truth of the statement
that “the element u belongs to the set A,
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But Gau and Buehrer (1993) pointed out that this
single value combines the ‘evidence for v and the
‘evidence against u’. It does not indicate the “‘evidence for
v’ and the ‘evidence against v’ and it does not also
indicate how much there is of each. Consequently, there
is a genuine necessity of a different kind of fuzzy sets
which could be treated as a generalization of Zadeh’s
fuzzy sets (1965).

Definition 1: A vague set (or in short VS) A in the
universe of discourse U is characterized by 2 membership
functions given by:

* A truth membership function
t, U=(0,1)and

+ A false membership function

f..U-(0,1)
Where,
t, (u) : A lower bound of the grade of membership of u
derived from the ‘evidence for u’.
f, (1) : Alower bound on the negation of u derived from

the ‘evidence against w” and t, (u) +f, (u)=1.

Thus the grade of membership of u in the vague set
A is bounded by a subinterval (t, (u), 1-f, (w)) of (0, 1).
This indicates that if the actual grade of membership is
(u), then t, (w) < p (u) < 1-f, (u). The vague set A 1s
written as A = { <u, (t, (u), £, (u)) > ue U}, where the
interval (t, (u), 1-f, (W) is called the vague value of uin A
and 1s denoted by V, (u).

For example, consider an universe U = {DOG, CAT,
RAT}. Avagueset A of Ucouldbe A = { <DOG, (.7,.2)>,
<CAT, (3,.5)., <RAT, {.4,.65>}.

Definition 2: A vague set A of a set U with t, (u) = 0and
f, (u) = 1vueU 1s called the zero vague set of U.

A vague set A of aset Uwitht, (u)=1andf, (u)=
OvuelU is called the unit vague set of 1.

A vague set A of aset Uwitht, (u) = ¢ and £, (u) =
1-a VueU 1s called the ¢-vague set of U, where ¢ €(0, 1).

Vague sets have an extra dimension over fuzzy sets:
There are a number of generalizations of fuzzy sets of
Zadeh done by different authors. For each generalization,
one (or more) extra dimension is annexed with a more
specialized type of aim and objective. Thus, a number of
higher order fuzzy sets are now in literatures and are
being applied mto the comresponding more specialized
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application domains. While fuzzy sets are applicable to
each of such application domains, higher order fuzzy sets
can not, because of its specialization character by
birth. Application of higher order fuzzy sets makes the
solution-procedure more complex, but if the complexity on
computation-time, computation-volume or memory-space
are not the matter of concern then a better results could
be achieved Vague sets defined recently by Gau and
Buehrer (1993) have also an extra edge over fuzzy sets. Let
T be a universe, the set of all students of Calcutta School.
Let A be a vague set of all good-in-maths students of the
universe U and B be a fuzzy set of all good-in-maths
students of U. Suppose that an intellectual Manager M,
proposes the membership value ug (x) for the element x in
the fuzzy set B by lus best intellectual capability. On the
contrary, another mtellectual Manager M, proposes
independently two membership values t, (x) and f, (x) for
the same element in the vague set A by his best
intellectual capability. The amount t, (x) 1s the true-
membership value of x and £, (x) 1s the false-membership
value of x in the vague set A. Both M, and M, being
human agents have their limitation of perception,
Judgment, processing-capability with real life complex
situations. In the case of fuzzy set B, the manager M,
proposes the membership value yp (x) and proceed to his
next computation. There is no higher order check for this
membershup value m general In the later case, the
manager M, proposes independently the membership
values t, (x) and f, (x) and makes a check at this base-
point itself by exploiting the constraint t, (x) +f, (x)=1.1f
1t 18 not honored, the manager has a scope to rethink, to
reshuffle his judgment procedure either on ‘evidence
against’ or on ‘evidence for’ or on both. The two
membership values are proposed independently, but they
are mathematically not independent. This is the breaking
philosophy of Gau and Buehrer's (1993) vague sets.

SOME POPULAR EXISTING METHODS
OF INTELLIGENT SEARCH

Some of the most interesting problems in AT have the
frustrating property that there is no good way to solve
them. It often happens that, although the solution can be
generated a plece, a partial solution falls apart and some
or all of the research to get it must be redone.

A search problem is characterized by an initial state
and goal-state description. The guesses are called
operators: a single operator transforms a state mto
another state, which we hope is closer to a goal state (a
state satisfying the goal-state description). The objective
may be to find a goal state, or to find a sequence of
operators to a goal state. In addition the problem may
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require finding just any solution, or an optimal solution:
the best solution, measured some way. Sometimes we are
not sure whether there is any solution; the object is then
to search until a solution is found or we are satisfied that
no solution exists.

A commonly cited class of search problems is
puzzles. For example, in the missionaries and cannibals
puzzle, the problem is this:

Three missionaries and three cannibals are trying to
cross a river. As their only means of navigation, they
have a small boat, which can hold one or two people. If
the cannibals outnumber the missionaries on either side
of the river, the missionaries will be eaten; this is to be
avolded. Find a way to get them all across.

The initial state has all the travelers on one side of
the river and the goal state description has them all on the
other. In this case, the goal state is described by bemng
specified completely and the objective is to find the
sequence of moves that gets to the end. By contrast, in
the scheduling problem the objective 1s a good schedule
and the sequence of moves that gets to it is of little
interest.

This distinction, between searching for a state and
searching for a path, is important to remember in writing
programs, but is of little theoretical significance, so we
usually neglect it. This 18 because the path can always be
included in the state. For example, in the missionaries and
cannibals problem, a program which searched for the goal
state could be made to remember the path by changing
the definition of the state to include not only who was
where, but also the steps taken so far. The latter would be
modified each time a step was taken. The distinction
between programs that find any solution and those that
find an optimal solution is more interesting.

There are a numbers of searching methods in
computer science, decision science and many other areas.
Let us consider a simple example: Suppose that Mr. X
wants to find some path from one city to another city
using a highway map. The starting point in the city, may
be called “start node” and the ending point in the city may
be called ‘goal node’. To find the appropriate path
through the highway map, Mr.X may consider two types
of costs:

*  Travel cost (in terms of time).
*  Travel cost (in terms of distance).

If Mr.X needs to go to the goal city often, he wants
to take care of the above two costs. But the data in
comnection to these costs i1s not always available and if
available, it is not always precise. Therefore, the optimal
searching in terms of above costs is not straightforward.
The existing method of searching like DFS, BFS do not
take care of costs (Fig. 1).
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Denotes the 3-D-A-B-E-F-G

Fig. 2: The start node mn a search tree

The most obvious way to find a seolution is to look at
all possible paths. Of course, we should discard paths
that revisit any particular city so that we cannot get stuck
in a loop-such as 3-A-D-S-A-D-5-A-D....

With looping paths eliminated, we can arrange all
possible paths from the start node in a search tree, a
special kind of semantic tree in which each node denotes
a path.

The Fig. 2 shows a search that consists of nodes
denoting the possible paths that lead outward from the
start node of the net.

Note that although in a tree denotes a path, there is
no room in the diagram to write out each path at each
node. Accordingly, each node is labeled with only the
terminal node of the path it denotes. Each child denotes
a path that is a one-city extension of the path denoted by
its parent.

The most important searching methods are DFS, BFS,
Hill Climbing, Beam search etc. Depth-first search is a
good 1dea when we are confident that partial paths either
reach dead ends or become complete paths after a
reasonable number of steps. In contrast, depth-first
search 1s a bad 1dea if there are long paths, even infinitely
long paths, that neither reach dead ends nor become
complete paths. In those situation, we need alternative
search methods.

Breadth-first search works even in trees that are
infinitely deep or effectively infimitely deep. On the other
hand, breadth-first search is wasteful when all paths lead
to the goal node at more or less the same depth.
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Note that breadth-first search is a bad idea if the
branching factor large or infinite, because of
exponential explosion. Breadth-first search 1s a good 1dea
when we are confident that the branching factor is small.
We may also choose breadth-first search, instead of
depth-first search, if we are worried that there may be long
paths, even mfinitely long paths, that neither reach dead
ends nor become complete paths.

We may be so uninformed about the search problem
that we cannot rule out either a large branching factor or
long useless paths. In such situations, we may want to
seek a middle ground between depth-first search and
breadth-first search. One way to seek such a middle
ground is to choose nondeterministic search. When doing
nondetermimstic search, we expend an open node that is
chosen at random. That way, we ensure that we cannot
get stuck chasing either too many branches or too many
levels.

Search efficiency may improve spectacularly if there
15 a way to order the choices so that the most promising
are explored earliest. In many situations, we can make
measurements to determine a reasonable ordering. Tn the
rest of this study, we learn about such methods that take
advantage of such measurements, they are called
heuristically informed methods.
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VAGUE SEARCH: A METHOD OF
INTELLIGENT SEARCH

Tn our research we shall deal with such type of search
problems in which distance of traversing a path is taken
mnto utmost consideration. By the shortest path we mean
the path of which total distance is minimum. An obvious
procedure is that one can find out all possible paths (if
possible) and then select the best one from them. This
procedure 1s known as British museum procedure. For this
one can find out all possible paths by DFS or BFS and the
search is to continue till all paths are found.

But mn the maximum case the site of the search tree 1s
too large and consequently finding all possible paths 1s
extremely rigorous. Our research here will be useful to
solve the search is too large. In many cases, we can
mnprove the existing searching techmique by using
guesses about distances remaining, as well as facts about
distances already accumulated. After all, if guess about
distance remaining is good, then that guessed distance
added to the defimitely kmown distance already traversed
should be a good estimate of the total path length, u (total
path length):

u (total path length) = d (already traveled)
+ e (distance remaining),
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where, d (already traveled) is the known distance already
traveled and e (distance remaining) is an estimate of the
distance remaimng,.

Surely, it makes sense to work hardest on developing
the path with the shortest estimated path length until the
estimate is revised upward enough to make some other
path by the one with the shortest estimated path length.
After all, 1f the guesses were perfect, this approach would
keep us on the optimal path at all times.

In general, however, guesses are not perfect and a
bad overestimate somewhere along the true optimal path
may cause us to wander away from that optimal path
permanently.

Note however, that underestimates cannot cause the
right path to be overlooked. An underestimate of the
distance remainming yields and underestimate of total path
length, u (total path length):

u (total path length) = d (already traveled)
+u (distance remaining),

where, d (already traveled) 1s the known distance already
traveled and where u (distance remaining) is an
underestimate of the distance remaining.

Now, if we find a total path by extending the path
with the smallest underestimate repeatedly, we need to do
no further work once all partial path distance estimates are
longer than the best complete far encountered. We can
stop because the real distance along a complete path
carmmot less then an underestimate of that distance. If all
estimates of remaining distance can be guaranteed to be
underestimates, we cannot blunder.

Of course, the closer an underestimate 1s to the true
distance, the more efficiently we search, because, if there
1s no difference at all, there i1s no chance of developmng
any false movement. At the other extreme, an
underestimate may be so poor as to be hardly better than
a guess of zero, which certainly must always be the
ultimate underestimate of remaining distance. In fact,
1gnoring estimates of remaming distance altogether can be
viewed, as the special case in which the underestimate
used 1s uniformly zero.

Vague numbers are used by Chen (2003) to analyze
vague system reliability. We now define two new objects
nlt (x) and MEO which will be useful in our presentation
next.

Vague number nlt (x): Let x ° R, the set of real numbers. A
vague mnumber not less than x, called in short by nlt (x), 1s
such that the true membership value t , , (x) may or may
not be equal to unity m nlt (x).

We next present the defimtion of the Most Expected
Object (MEQ) of a vague number nlt (x).
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Most Expected Object (MEQ): Suppose that A is a vague
set of a set X with true membership function t, and false-
membership function f,. The term ‘Most Expected Object
(MEO) of A 15 defined by the following crisp subset of X:

MEO(A)= {x, Lif t, (x,)=1

X, where, X, € X and

= tA(Xq)i aX{tA(Xi)'X EX} B

f,(x) ()
Proposed method: We start by an example. Consider a
basic search problem shown in Fig. 1.

Suppose that the number in the Fig. 1 denotes the
travel cost (between the corresponding pair of nodes).
We want to find the optional path from the starting node
S (called the root node) to the destination node G (called
the goal node). The term optimal means with minimum
travel cost.

In our method we start from S and keep track of all
partial paths contending for fiwrther consideration. The
shortest one is extended one level creating as many new
partial paths as there are branches, but we make every
time a guess about the distance remaiming in terms of a
vague number like nlt (x).

Suppose that a guess about the distance remaining
is done which is nlt (x). The guess is done by the path
searcher. Then a good underestimate of the total path
length 18 given by e = d+x°, where d = distance already
traveled and x” = least member of MEQ (x) not less than x.

Here, x” acts as an underestimate of the remaining
distance. Clearly, the underestimates at every step cannot
cause the right path to be overlooked. Now, if we find a
total path by extending the path with the smallest
underestimate repeatedly, we need to do further research
once all partial path distance estunates are longer than the
best complete path distance so far encountered. The
algorithm is given in the next study.

otherwise

Vague search algorithm:

Until the first path in the queue terminates at the goal
node or the queue is empty.

Remove the first path from the queue; create new
paths by extending the first path to all the neighbors
of the terminal node.

From a one-element queue consisting of a zero-
length path that contains only the root node.

Reject all new paths with loops.

Add the remaining new paths, if any, to the queue.
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Sort the entire queue by e (where e = d+x”), with
least-cost paths in front. {here guess is nlt (x) and x’
= least member of MEO (x) not less than x }.

If the goal node 1s found, then success; otherwise
failure.

An example: Consider the search problem in Fig. 3, which
we now solve using the above algorithm. Starting from
rootnode S, there are initially 2 partial paths, which are S-
A and S-D. At the node A, d =13 and suppose that guess
made by the decision-maker about the remaiming distance
1s the vague number nlt (90).

Also suppose that MEO (90) = 80" = 93. Therefore, at
A, e=dx’ =106. At the node D, d = 24 and suppose that
guess about the remaiming distance 1s the vague number
nlt (40).

O

(9

(Success) ="6g

Fig. 3: The vague number nlt (40)
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Suppose that MEO (40) i.e. 40° = 42, Therefore, e =
dtx" =24 +42 = 46,

Clearly, this time D is the node from which we have to
search, because D’s underestimated path length i1s 66
which 1s shorter than that of A.

Expanding D leads to the partial paths S-D-A and S-
D-E. The expansion of partial path at every step will look
like below (hypothetical). Thus, we find that the intelligent
vague optimal path is S-D-E-F-G, which is of length 68.

CONCLUSION

In this study, we have presented an intelligent search
technique using vague set theory of Gau and Buehrer.
The proposed method is a kind of vague branch and
bound search. We have explained the method by an
example with hypothetical data.
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