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Abstract: A new method to generate Gaussian kernel width parameter (q) for Support Vector Clustering (SVC)
1s proposed in this study. The proposed method 1s based on i1dea of decreasing angle, along with mcrement
of q. This method iz a modification of secant method that previously proposed. Experiments are performed
using four sets of data, each data set has its own characteristics. Experimental results show that angle
decrement based method can generates a valid sequence of q value with simpler computation than secant
method. In general, angle decrement based method can improve the performance of SVC so that clustering

process can be performed faster.
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INTRODUCTION

Clustering is a method to divide a set of data into
some subset, so that each subset of data shares some
common characteristics. Data which are belong to same
cluster are more similar than other data that belong to
different cluster (Bishop, 2006). Clustering has been used
widely m many fields, such as m biomformatics, pattern
recognition and image analysis. There 13 some categories
of clustering algorithm, there are hierarchical (e.g., BIRCH
(Zhang et al., 1996), CURE (Guha et al., 1998), Chameleon
(Karypsis et al, 1999)), density-based (e.g., DBSCAN
(Ester et al, 1996), OPTICS (Ankerst et al, 1999)),
grid-based (e.g., STING (Wang ef al., 1997), model-based,
(e.g., COWEB (Fisher, 1987)) and boundary-detecting
(e.g., SVC (Ben-Hur ef al., 2001)). In thus study, we will
focus on Support Vector Clustering (SVC), which 1s
proposed in (Ben-Hur et al., 2001, 2000).

SVC uses the idea of support vector to cluster the
data. In SVC data points are mapped from data space to a
high dimensional feature space. The mapping process 1s
done using the Gaussian Kernel (Ben-Hur et af., 2000). In
feature space, we find a minimal sphere that enclosing the
feature space images of data points. One of the most
umportant parameter in SVC, 1s the gaussian kermel width
parameter (q) (Lee and Daniels, 2005). This parameter
influences the number of clusters produced. The value of
this q parameter 1s difficult to determine. The value of q 1s
different for each of dataset; it i1s depend to the
characteristic of dataset that will be processed. A secant-

like method to generate sequence of q value 1s proposed
in Lee and Daniels (2003) and (2004). This secant-like
method is based on calculation of radius for each q value.
The calculation of radius is a complex computation, so,
the calculation of q value with this secant-like method is
also complex. For overall SVC algorithm, secant-like
method is increase the complexity of SVC algorithm.

New method for generating sequence of q values 1s
proposed m this study. This method 1s based on the idea
of angle decrement. The proposed method is a
modification of secant-like method, so that the calculation
of radius for each q value 1s not needed. This method has
simpler calculation than the secant-like method. With this
angle decrement based method, generation of q value can
be generated faster than using secant-like method. The
angle decrement based method 1s implemented using
MATLAB™. We use the four data sets to test the
proposed method.

SUPPORT VECTOR CLUSTERING

SVC is a non-parametric clustering algorithm based
on support vector approach of Support Vector Machine
(SVM). SVM (Vapruk, 1995) 15 a learning algorithm that
has been used widely, especially for data classification.
First of all, we use Gaussian Kermel to map data points
from data space to a high dimensional feature space. In
feature space, we look for the smallest sphere that
encloses the images of the data. Then, the enclosing
sphere is mapped back to data space. Inthe data space,
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the sphere forms a set of contours, which encloses the
data poimnts. These contours are interpreted as cluster
boundaries. Pomts enclosed by each separate contour are
associated with the same cluster.

The number of disconnected contours in data space
increase, leading to an increasing number of cluster, if the
width parameter of the Gaussian Kernel is decreased. SVC
can deal with outhiers by employing a soft margin
constant that allows the sphere in feature space not to
enclose all points. For large value of this soft margin
constant, we can also deal with overlapping clusters.

Let {xicX be a data set of N points, by wing a
nonlinear transformation @ from X to a high dimensional
feature space, we look for the smallest enclosing sphere
of radius R. this sphere 1s described by the constraints:

H@(Xl) _aHZ gRZ: V] (1)
where,
||.]| = The Euclidean norm.
a = The center of the sphere.

Soft constramts are incorporated by adding slack
variable, so the constraint is,

1D(x)) -alf* <R* +E,
with £=0 (2)

To solve the problem, we introduce the Lagrangian

L:R2—Z(R2+(:J—|‘®(X])—a||2)l3]—Z(:JM]-I-CZE_,] ®)

where, ;>0 and ;>0 are Lagrange multipliers, C is a
constant and CXE; is a penalty term. Setting to zero the
derivative of L with respect to R, a and &, respectively,
leads to,

> =1 (4)
a=3 b Ok (5)
E'J :C_“-j € (6)

The definition of Gaussian kernel used in this
algorithm is ,

I{(X_1 X ) = e_q"Xl_XJH2 (7)
>

with width parameter q. From the derivation of above
formulas, we got that:

*  Bounded support vector: if Bj = C.
Support vector: if 0 < ) < C.
Inner points: if fj = 0.
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Fig. 1: BSV, SV and minimal sphere

In view of the constramnts and the defimtion of
kemels, we have,

R*(x) =K(x,x)- 2> B,K(x, %)+ > BB K(x.x) (8)

The radius of the sphere is R = {R (%)) | x; is a support
vector}. The counters that enclose the points in data
space are defined by the data set {x | R (x) = R}. SVs lies
on cluster boundaries, BSVs are outsides and all other
pounts lie mside the cluster. Figure 1 illustrates three kinds
of point m SVC. SVC can be divided into three major
steps, the generaton of kernel matrix, solving the
quadratic programming to find the Lagrange multiplier and
cluster labeling.

In SVC algorithm, the width parameter of Gaussian
kernel (q) controls how ‘spread out’ the data points
feature space images are and therefore, determines the
size of the minimal sphere. Finding a small set of ¢ values
for a given dataset is an important part of SVC algorithm.

SECANT-LIKE METHOD

A secant-like numerical algorithm is proposed in
Lee and Daniels (2004, 2005). Tt is based, on the intuition
that sigmificant changes in clustering are less likely to
oceur in g intervals where R values are fairly stable. This
relies on R, monotonic. Therefore, we characterizing
R? as a function of g, this establishes that R* = 0 for q = 0,
R’ =1-1/Nif q = . It is assumed that the value of C is
fixed so that the number of outlier 1s not varied. The
number of ¢ values generated by the secant-like algorithm
is estimated using lnown result on secant method. The
estimate relies on spatial characteristics of the dataset but
not the number of data pomnts or the dimensionality of the
dataset. To characterizing R* as a function of g, we first
observe that as R is the radius of the minimal sphere
enclosing data points images, R’20 for O<qge, If ¢ = 0,
then R’ = 0. These statements described:
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g=0ifand enly if R* =0 (10)

If g=o,thenp,=1/MN, forallTe {I,..., N} (11}
If g = e, then R* (x,) = 1-1/N (12)
R’=1ifand enly if g = w0 and N = = (13)

The operation of secant-like method 1s illustrated n
Fig. 2. The starting q value for secant-like method is 0, the
second g value is from (Ben-Hur ef al, 2001 ), which is:

1

q= a4

2
IHHXLJ ||Xi - XJ H

this g value 13 expected to yields a result of one cluster.
This secant-like method is based on theorem that R* for
each value of g (g=<<) is lower than 1-1/N. For each value
of g, the associated R value is calculated using the SVC
steps of updating a kernel matrix, solving the Lagrangian
and computing the radius of the minimal sphere. To
generate each subsequent ¢ value, a line through the two
previous R’ curve points is extended until it intersects the
line R* = 1-1/N. the secant-like algerithm terminates when
every data point is an SV or the slope of the line is close
to flat. When every data point is an SV, the number of
clusters 1s typically N and no useful clustering
mnformation 1s usually gammed for larger q values.

The secant-like method for generating sequence of
q values, described in previous section has a major
disadvantage. For each of q value, except for g, and q,
the value of R, must be calculated. After the value of
current R, is calculated, find a line that connects previous
R, with current R, and then find the intersection point
between this line and 1-1/N. For each of q value, the
kemel matrix has to be recalculated and the Lagrangian
has to be solved.

The calculation of R? is a complex computation,
finding a line that connects previous R* with current R’
and finding the intersection point between tlus line and
1-1/N is also complex computations. Tt can be seen that
the secant-like method increases the complexity of SVC
algorithm.

Along with the increase of g, the value of R* will also
increase. In the high dimensional feature space, it means
that the radius of enclosing sphere is increase and the
enclosing sphere 1s become larger. Figure 3 illustrates the
expansion of enclosing sphere. As the enclosing sphere
expands, the mumber of BSV is tend to decrease. Some
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Fig. 2: Secant-like method

Fig. 3: Increase of enclosing sphere’s radius

BSVs will become either inner points or SVs. Figure 3
shows that the enclosing sphere expanded from sphere 1
to sphere 2. Imtally, pomt ¢ and d are BSV, after the
sphere expands, point ¢ becomes an inner point and point
d becomes a SV.

Proposed Angle Decrement Based Method: Another
method to generate sequence of ¢ values is proposed in
this study. This method is modified from secant-like
method described above. The mam 1dea of this method 1s
based on the fact of the decreasing angle mn secant-like
method. With this angle-based method, the complexity of
computation on SVC can be reduced. Figure 2 shows that
the value of R’ is increasing, along with the increment of
g. The lines connecting origin pomt (0, 0) and sequence
of R? values will become sloppier, slope of these lines
become smaller. We can use this condition to generate
sequence of q value. From Fig. 4 shows the decreasing
angle with increasing g values. We can see that
60,0, and tan B, >tan 6 >tan B.>.... We got that,

Ll

N tan ©,

a (15)
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Fig. 4: Basic angle decrement based method
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Fig. 5. Angle decrement based method with intersection
points

To obtain sequence of g values that approximate the
q values produced by secant-like method, we perform
angle decrement based method to the intersection points
between R® max and q. Figure 5 shows the angle
decrement based method using the intersection pomts of
secant-like method.

From Fig. 5, we can see that the value of tan 6 can be
obtained using Eq. (15), forn>2. Forn=1and n=2,

1-1/N

tan@, =tand, = (16)

q;

From implementation of secant-like method to some
data sets, we observed that the current value of tan 0 is
about half of previous tan 0. From this observation we set
a hypothesis that tanf, = 0.5tanB  , for n>2, then we got

1-YN _ 1-IN

= et a7
tan®, 0.5tan@,

qn

EXPERIMENT AND ANALYSIS

To compare the performance of angle decrement
based method and secant-like method, we implemented
both methods with Matlab. Both methods are tested with
4 datasets, 2 datasets are 2-dimensional data and the
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Table 1: Linearly separable 2-dimensional data with secant-like method

Iterations q Nsv
1 0.001156 4
2 0.003488 5
3 0.008149 9
4 0.017008 14
5 0.034198 18
6 0.073686 33

Table 2: Linearly separable 2-dimensional data with angle decrement based

method
Iterations q Nsv
1 0.001156 4
2 0.003488 5
3 0.006970 9
4 0.013950 12
5 0.027900 17
6 0.055800 28

Table 3: Non-linearly separable 2-dimensional data with secant-like method

Tterations q Nav
1 0.00590 8
2 0.01690 8
3 0.03200 8
4 0.06346 12
5 0.11830 26
6 0.21540 48

Table 4: Non-linearly separable 2-dimensional data with angle decrement

based method
Tterations q Nsv
1 0.00590 8
2 0.01690 8
3 0.03374 10
4 0.06750 16
5 0.13500 38
6 0.26990 48

others are high-dimensional data. The first dataset 15 a
linearly separable 2-dimensional data, the second dataset
1s nonlinearly separable 2-dimensional data, third dataset
is a 4-dimensional Iris dataset and the last dataset is
image-segmentation dataset with 19 dimensions. Both Iris
and Image-Segmentation dataset are obtained from UCL
machine leaming repository (Blake and Merz, 1998) and
both 2-dimensional datasets are generated, for
experimental purpose.

Table 1 shows the experiment result from linearly
separable 2-dimensional data with secant-like method.
Table 2 shows the result of angle decrement based
method. Both methods need 6 iterations to produce good
clustering result. Both methods produced same clustering
result, although the numbers of support vector (Nsv) are
not equal. Processing time for angle decrement based
method is 18.65 sec, better than processing time of secant-
like method (23.26 sec).

Table 3 and 4 show the experiment result from
nonlmearly separable 2-dimensional data with secant-like
method and angle decrement based method, respectively.
Both methods need 6 iterations to produce good
clustering result. Processing time for angle decrement
based method is 1.65 sec, better than processing time of
secant-like method, 1.88 sec.
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Table 5: Tris data with secant-like method

Tterations q Nsv
1 0.02 4
2 0.06 6
3 0.16 11
4 0.35 16
5 0.70 22
6 1.30 31
7 2.27 47
8 3.87 67
Table 6: Iris data with angle decrement based method

Tterations q Nsv
1 0.0200 4
2 0.0600 6
3 0.1248 9
4 0.2497 12
5 0.4994 18
6 0.9990 27
7 1.9975 43
8 3.9950 68
Table 7: Image-segmentation data with secant-like method

Iterations q Nsv
1 0.000000431 129
2 0.000001313 194
3 0.000002832 272
4 0.000005745 334
5 0.000010261 438
6 0.000020016 522
7 0.000040614 653
8 0.000083612 751
9 0.000175177 874

Table 8: Image-segmentation data with angle decrement based method

Tterations q Nsv
1 0.000000431 129
2 0.000001313 194
3 0.000002626 269
4 0.000005252 327
5 0.000010504 446
6 0.000021008 532
7 0.000042016 668
8 0.000084032 759
9 0.000168064 868

Experiment results from Iris dataset with secant-like
method and angle decrement based method are shown n
Table 5 and 6. Both methods need 8 iterations to produce
good clustering result. Processing time for angle
decrement based method 18 23.51 sec, better than
processing time of secant-like method, 25.85 sec.

For Tmage-segmentation dataset, the experiment
results are shown in Table 7 and 8. Both methods need
iterations to produce good clustering result. Processing
time for angle decrement based method 1s 8652.515 sec,
better than processing time of secant-like method,
9508.173 sec.

From the experiment results we can see that the angle
decrement based method can produce clustering result as
good as secant-like method. Angle decrement based
method can produce good clustering result with better
processing time than secant-like method. This result
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happened for all datasets that we used in this experiment.
We can see that both methods need same number of
iterations for producing good clustering result, but angle
decrement based method has better processing time
because the calculation of q in each iteration of angle
decrement based method is faster than calculation of ¢ in
secant-like method.

CONCLUSION

A new method to calculate Gaussian kernel width,
angle decrement based method, 1s proposed in this study.
The proposed method can produce good clustering result
with better processing time than secant-like method. This
proposed method improves the overall performance of
Support Vector Clustering algorithm. With this angle
decrement based method, SVC can produce good
clustering result with better performance than before.

The SVC algorithm can cluster a non-linearly
separable data, this is one of significant advantage of SVC
over other clustering algorithm. Another advantage is the
ability to cluster ligh-dimensional data. SVC can also
handle outliers in a dataset. With all of these advantages
we can see that SVC 1s a very good clustering algorithm.

For further research, more intensive experiments with
various datasets are needed. Experiment with very large
datasets and very lugh dimension 1s a good point to do in
order to improve this experiment. Experiment with various
datasets contaiming outliers 1s also needed.
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