ISSN: 1682-3915
© Medwell Journals, 2008

ne

Asian Journal of Information Technology 7 (9): 403-407, 2008

An Approach for Parallel Job Scheduling Using Supple Algorithm

5.V, Sudha and K. Thanushkodi
Deprtment of Information Technology,
Coimbatore Institute of Engineering and Information Technology, Coimbatore, India

Abstract: Supple Scheduling 1s a Scheduling methodology for medium grain applications. The medium grain

applications consist of many processes running on different Processors. A way of characterizing a parallel

system 1s to consider the synchromzation granularity or frequency of synchronization between processes in

a application. A Single application can be effectively implemented as a collection of threads. In this case, the

potential parallelism of an application must be explicitly specified by the Programmer. Typically, there will need
to be rather a high degree of coordmation and mteraction among the threads of an applicatior, leading to a

medium grain-level of synchronization. The various threads of an application interact so frequently, scheduling

decisions concerning one thread may affect the performance of the entire application. The Supple algorithm 1s
fully implemented and compared the results with various other scheduling algorithms like First Come First
Served, Gang Scheduling, Flexible Co scheduling. This study describes in detail the implementation of Supple
and its performance evaluation with a original workload log LLNL-Thunder-2007-0.

Key words: Gang scheduling, first come first served scheduling, flexible co scheduling, performance metrics,

supple algorithm

INTRODUCTION

Large Scale parallel machines are essential to meet the
needs of demanding applications at supercomputing
environments, such as Lawrence Livermore (LLNL), Los
Alamos (ILANL) and Sandia National Laboratories (SNL).
With the increasing emphasis on computer sunulation as
an engineering and scientific tool, the load on such
systems is expected to become quite high in the near
future. As a result, it is imperative to provide effective
scheduling strategies to meet the desired quality of
service parameters from both user and system
perspectives (Kerbyson, 1999; Dan Tsafrir, 2007). We
would like to reduce response and wait tine for a job,
minimize the slowdown that a job with the new algorithm.

Effective Job Scheduling schemes are important for
parallel system in order to improve system metrics like
utilization and user metrics like turn around time. Most of
the studies in literature have reported these metrics
averaged over all jobs of simulated traces. When
compared different scheduling strategies (Eitan et al.,
2005), many studies have concluded that the relative
effectiveness of different schemes often depends on the
job mix (Eitan ef al., 2005). In order to gain greater insight

into the relative effectiveness of different scheduling
strategies, we have taken the original log for the medium
grain application (Kettimuthu, 2002; Lee, 1997).

Scheduling of processes onto processors of a parallel
machine has always been an important and challenging
area of research. Its importance stems from the mmpact of
the scheduling discipline on the throughput and response
time of a system.

Parallel Tob Scheduling has been widely studied in
the past (Nissiumov, 2007; Anglano, 2000). The sumplest
way to schedule jobs 1s to use Fist Come First Served
(FCFS) policy. This approach suffers from low utilization.
Gang Scheduling is a scheduling algorithm that schedules
related thread or processes to run simultaneously on
different processors. Gang Scheduling requires that the
schedule of communicating processes be precomputed
which complicates the co scheduling of application.
Flexible Co scheduling concentrates mainly on the Fine
and Coarse grain applications and the algorithm saturates
at heavy loads.

The main objectives of this study, are to define,
propose, develop and implement the Supple Algorithm
using simulation. The implementation is done through
simulation.

Corresponding Author:

8.V. Sudha, Deprtment of Information Technology,

Coimbatore Institute of Engineering and Information Technology, Coimbatore, India

403

Asian J. Inform. Technol., 7 {9): 403-407, 2008

MATERIALS AND METHODS

Supple algorithm: The algorithm concentrates on the
medium grain application (Tsafrir, 2007; Nissimov, 2007)
and the entire application workload is being divided in to
several slot. The jobs are equally placed in the slots. A
Scheduling Matrix 15 developed for the algorithm
imnplementation and a multiprogramming level of 10 1s
considered for experiment.

In the slots taken, every 5 jobs are considered as
Primary jobs and being allocated 1 the matrix. Now the
next 5 jobs in the workload are taken and allocated in the
primary slots which are not used by the primary jobs. The
entire process is continued until all jobs are completed in
the slot and work continue until all slots are completed.
The sample Scheduling Matrix is shown in the (Table 1).

Scheduling of parallel jobs is usually viewed in terms
of a matrix called Scheduling Matrix called Ousterhout
Matrix that defines the tasks executing on each processor
and each time slice (Srimivasan, 2002; Antonopoulos,
2001). The scheduling matrix 1s as shown Table 1, where
each task of a job 1s represented as py where py
represents the jth task of the job 1. Each row of the matrix
defines a 10 Processor virtual machine. All tasks of a
parallel job are always co scheduled to run concurrently.

Workload characteristics: The simulation studies were
performed using the collection of workload log available
from Feitelson’s archive. This log contains several
months worth of accounting records from a large Linux
cluster called Thunder installed at Lawrence Livermore
National Lab. This specific cluster has 1024 nodes, each
with 4 processors, for a total of 4096 processors. At the
time that this log was recorded, Thunder was considered
a capacity computing resource, meamng that it was
mtended for ruming large numbers of smaller to medium
jobs. This is in contrast with the newer Atlas cluster,
which is a capability machine, used for running large
parallel jobs that cannot execute on lesser machines. The
original log is available as TLLNL-Thunder-2007-0. This file
containg one line per completed job in the Slurm format.
The fields are JobID, start time, end time etc.

The difficulty of scheduling parallel resources 1s
deeply mterwoven with the inherent vanability in parallel
workloads. To propose a robust policy, we first examine
real parallel workloads of productionsystems (Lublin,
2003; Franchtenberg et al., 2002).

Performance metric: The synthetic workload generated
Feitelson’s archive are used as input to the simulation of
various scheduling strategies. We monitor the following
parameters the arrival time, start time, execution time,

Table 1: The scheduling matrix

PO Pl P2 P3 P4 P5 P6 P7 P8 P9
P11 pll2 pl3 pl4 pls

p21 p22 p23 p24 P25 p25

p3l p32 p33 p34 p3s

p4l pd2 pd3 pdd

p51l p52 p33 p34 p55 pS6 p57

finish time etc. Different Scheduling algorithms have
different properties and may favor one class of processes
over another. In choosing which algorithm to use m a
particular situation, we must consider the properties of the
various algorithms (Feitelson, 1998; Franchtenberg et al.,
2003). Many criteria have been suggested for scheduling
algorithms. The criteria includes the following:

Mean utilization: We want to keep the CPU as busy as
possible. CPTJ Utilization may range from 0-100%. Tn a real
systemn, it should range from 40% (for a lightly loaded
system) to 90% (for a heavily loaded system).The mean
utilization is the ratio of cpu busy time to the number of
processors multiplied with Total time for execution.

2.CPU Busytime

Number of processors < total time

Mean utilization = (1)

Mean response time: In an interactive system, Turnaround
time may not be the best criteria. Often, a process can
produce some output fawly early,and can continue
computing new results while previous results are being
output to the user. Thus, another measure is the time
from the submission of a request until the first response
1s produced. This measwre 15 called response time
(Eitan et al., 2005).

¥ Jobfinish time — Job submittime)

Meanresponse time = -
Numberof jobs

Mean reaction time: The mean job reaction time defined
as the mean time interval between the submission and the
start of the job.

¥ Job start time — Job submit tirmne (3)
Number of jobs

Meanreaction time =

Mean slowdown: Mean Slowdown 1s the sum of jobs
response times divided by the job’s execution times. This
metric emerges as a solution to normalize the high
variation of the jobs response time.

Y. Jobresponsetime/Job execution time
Mean slow down =

Number of jobs
(h

Asian J. Inform. Technol., 7 {9): 403-407, 2008

Turn around time: From the point of view of a particular
process, the important criterion 18 how long it takes to
execute that process. The mterval from the time of
submission of a process to the tume of completion is
the tum around time. Tum around time is the sum of
periods spent waiting to get into memory, waiting in
the ready queue, executing on the CPU and doing /O
(Eitan et al., 20035).

Waiting time: The scheduling algorithm does not affect
the amount of time during which a process executes or
does 1/0; it affects only the amount of time that a process
spends waiting m the ready queue. Waiting time 1s the
sumn of the periods spent waiting in the ready queue.

Scheduling strategy: We now describe and analyze in
detail the supple scheduling algorithm mn our work. We
start with the simple Scheduling algonitlim First Come First
Serve, executed with the log specified, then the same log
with the Gang scheduling and the Flexible co scheduling
(Nikolopoulos and Polychronopoules, 2003). The
algorithm analyze the medium grain application indetail.
The grain applications of
synchronization at a gross level and this kind of situation

medium consists
is easily handled on a multiprogrammed uniprocessor. The
synchronization granularity and processes plays an
umportant role in the performance of the application so,
the supple algorithm carefully examines the jobs and
schedules neatly so that the performance level reaches a
greater height.

Supple algorithm
For (all jobs in a queue)
» Sort the jobs in accordance with the submit time.
¢ Divide the total number of jobs in to 1000 slots.
¢ THach job is given a time quantum to execute in each
processor so that a strict global Round Robin is
followed.
While (Slots available).
Scheduling flag = true
Scheduling count=0
» While(Number of jobs available in the slot)
» If Scheduling flag.
¢ Primary Jobs=5 Jobs in the slot.
+ Assign the jobs in the Scheduling Matrix.
+ Primary Slots = ideal Processors not used
by primary jobs.
¢ Scheduling Flag is off.
¢ Scheduling Count is incremented.
» EHlse

Secondary Jobs=next 5 Jobs 1 the slots

405

If Primary slots available the assign
secondary slots in the primary slots.
Scheduling flsg 15 on.

Scheduling Count 18 incremented.

» If scheduling count 1s 2.

Schedule the jobs to the processor.
Scheduling Count 15 0.

Experimental results: Tn this study, we present and
analyze the performance of Supple Algorithm. First, for
each metric, we present the results by simulation. All
simulators are written in Java. The performance analysis
graphs m Fig. 1-6 shows that the average waiting time,
mean response time, turnaround time, mean reaction time,

14:24:00
12:00:00 mAvg wait
a 9:36:00
2 7:12:00
4:48:00
2:24:00 | |
00 I I [|
0:00:00 4 T T T 1
CFS Gang FCS Supple
12:32:43 3:08:11 2:30:33 1:47:32
Scheduling algorithms

Fig. 1: Average waiting time considering the scheduling

algorithms
14:24 -
12:00 OMean_resp
9:36 4
a
E 7:12 4
4:48
2:24 I_l
0:00 T T I I 1
FCF§ = Gang FCS Supple
12:46 LHI] 2:;33:18 1:48:30
Scheduling algorithms

Fig. 2: Mean response time considering the scheduling
algorithms

8:24:00
7:12:0404
6:00:00
4:48:00+
3:36:00
2:24:00+
1:12:004
0:00:00

o Turh_around

:

1

M =
Gang FCS

Supple
1:42:18 1:00:00 0:01:33
Scheduling algorithms

FCFS
T:11:34

Fig. 3: Tumn around time considering the scheduling
algorithms

Asian J. Inform. Technol., 7 {9): 403-407, 2008

14:249 g Mean_reaction
12:00 4
9:36
a 7:12
F 4481
2:244 I_l I_l
0:00 T T T 1
FCFS Gang FCS Supple
12:32 3:08 2:30:33 1:47:32
Scheduling algorithms
Fig. 4: Mean reaction time considering the scheduling
algorithms
48:00:00 -
gg;igg] BMean_slowdown
33:36:00 4
E 28:48:00 4
= 24:00:00 4
19:12:00 4
14:24:00 4
9:36:00
4:48:00 - |_|
0:00:00 T T |:| T 1
FCFS Gang FCS Supple
43:56:48 10:59:12 8:47:22 6:16:41
Scheduling algorithms
Fig. 5: Mean slow down considering the scheduling
algorithms
0.8+

0.7 DO Mean_utili

0.6
g 0.51
o 041
5 031
0.2
0.1

0 FCFS = CGang FCS Supple.

0.5 0.5 0.60 0.70

Scheduling algorithms
Fig. 6: Mean utilization considermg the scheduling

algorithms

mean slow down and mean utilization for the supple
algorithim gives better results when compared to the
scheduling strategies first come first served, gang
scheduling and flexible co scheduling.

CONCLUSION

We present a new Scheduling methodology Supple
Algorithm for Medium Grain Applications. The Algorithm
concentrates mainly on the frequency of synchromization
between the processes of the application and the
performance 1s inproved and the supple algorithm 1s
compared with Fist Come First Served, Gang Scheduling
and Flexible Co scheduling. The workload of 30,000 jobs
is considered for the calculation.

The first come first served algorithm executes the
work and the overall runming time 1s 7 h and 11 min. Gang
scheduling executes at the time 1 h and 42 min, Flexible Co
scheduling executes at 1 h and the supple algorithm
executes at 1 min and 33 sec. The drawback 1s overcome
with the supple algorithm.

REFERENCES

Anglano, C., 2000. A comparative evaluation of implicit
coscheduling strategies for network of workstations.
Proc. Ninth Int'l Symp. High Performance Distributed
Computing, pp: 221-228.

Antonopoules, CD, D.S. Nikolopoulos and
T.5. Papatheodorou, 2001. Informing algorithms for
efficient scheduling of synchronizing threads on
multiprogrammed SMPs. Proc Int'l Conf Parallel
Processing, pp: 123-130.

Eitan, F., D.G. Fettalson, F. Petrinu and J. Fernandez, 2005.
Adaptive parallel job scheduling with flexible
coscheduling. TEEE Trans. Parallel and Distributed
Sys., 16 (11): 1066-1077.

Feitelson, D.G. and L. Rudolph, 1998. Metric and
benchmarking for parallel job scheduling. Tob
Scheduling Strategies for parallel Processing,
pp: 1-24.

Frachtenberg, E., F. Petrini, J. Femandez, 3. Pakin and
S. Coll, 2002, STROM: Lightning-Fast Resource
Management. Proc. Supercomputing conf.

Franchtenberg, E., D.G. Feitelson, J. Fernandez-Peinador
and F. Petrim, 2003. Parallel Job Scheduling under
Dynamic Workloads. Proc. Ninth Worlkshop Tob
Scheduling Strategies for Parallel Processing,
Pp: 208-227.

Kerbyson, D., H. Alme, A. Hosie, F. Petrini, H. Waserman
and Miggints, 1999. Predictive Performance and
Scalability Modeling of a Large -Scale SMP Clusters.
Proceeding of the Symposium, Frontiers of
Massively Parallel Computation.

Kettimuthu, R., V. Subramani, Srinivasan, T.B. Gopalsamy,
DXK. Panda and P. Sadayappa, 2002. Selective
preemption Strategies for Parallel Job Scheduling.
Proceeding Int'l Conf Parallel Processing, pp: 55-71.

Lee, W., M. Frank, V. Lee, K. Mackenzie and .. Rudolph,
1997. Implication of /O for gang scheduled
workloads. Job Scheduling Strategies for Parallel
Processing, pp: 215-237.

Lublin, U. and D.G. Feitelson, 2003. The workload of
super computers. Modeling the characteristics of
rigid jobs. I. Parallel and Distributed Computing,
63(11): 1105-1122.

Asian J. Inform. Technol., 7 {9): 403-407, 2008

Nikolopoules, D.S. and C.D. Polychronopoulos, 2003,
Adaptive scheduling under memory constraints on
non-dedicated computational farme. Future
Generation Comput. Sys., 19 (4): 505-519.

Nissimov, A. and D.G. Feitelson, 2007. Probabilistic
backfilling. 13th Workshop on Job Scheduling

Strategies for Parallel Processing in Conjuction with

21st ACM International Conference on Super
Computing, pp: 102-115.

Srinivasan, 5., R. Kettimathu, V. Subramam and
P. Sadayappan, 2002. Selective Reservation
Strategies for Backfilling Job Scheduling. Job
Scheduling Strategies for Parallel Processing,
pp: 55-71.

Tsafrir, D., Y. Etsion and D.G. Feitelson, 2007, Backfilling
using system-generated predictions rather than user
runtime estimates. IEEE Trans. Parallel and
Distributed Syst., 18 (6): 789-803.

407

