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Abstract: Traders in security market generally create and adapt a trading strategy pool first and choose one
to execute according to market states reciprocally. In trading strategy layer, traditional Constant Proportion
Portfolio Insurance (CPPI) strategy only considers protecting floor wealth. This study considers a goal-directed
strategy to protect goal wealth in advance. Combining the CPPI strategy and the goal-directed strategy, this
research adopts a piecewise linear goal-directed CPPI (GDCPPI) strategy to trade securities. In technology layer,
this research applies the Learning Classifier System (LCS) to form and adapt the trading strategy pool and
choose a suitable trading strategy agamst the consecutively changed market states. With the help of learning
classifier system, this study can deal with the dynamic pattern evolution of the piecewise linear goal-directed
CPPI strategy. This study executes many experiments under Brownian motion, GA and LCS technologies to
generate the piecewise linear goal-directed CPPT strategies. Experimental results show that the T.CS technology
outperforms GA technology and GA technology outperforms Browman motion technology further in
generating piecewise linear goal-directed CPPT strategies.
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INTRODUCTION

Security market consists of many traders and
securities, where traders transact securities each other in
every trading day. According to the demand and supply
principle, each security price will be changed after each
transaction. When transactions are going on, the price
dynamic of each security forms a time series. From
technical analysis perspective mn security market, traders
believe that this price dynamic time series will contain
some patterns which can predict the direction of future
price dynamics. Therefore, many trading-data-based
patterns were proposed, such as head-and-shoulders,
cross-moving-average and so on. To formulate, recognize
and even evolve the price dynamic patterns are the basic
activities for technical traders. Based on pattern
recognition, traders can make suitable trading strategies
and select one to trade securities for obtaining investment
benefit. These pattern activities can form the task of
pattern management. However, this is not an easy job.

The difficulties come from many aspects on pattern
management. For example, the decision of scale size of a
pattern 1s a hard problem on pattem recogmtion, i.e.,
which time range should be taken when comparing the
current enviromment state and the stored pattems.
Another difficulty is the problem of deciding the similarity
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between the current environment state and the stored
patterns. In addition, suitable tools or programs to
implement the activities of pattern management will affect
the success hugely. Moreover, the prediction of any
chose pattern still contains prediction risks. This implies
that generated trading strategies should have the
capability to reduce these risks. Therefore, the purposes
of this study are trying to build a good tool to implement
activities of pattern management and to adopt a good
trading strategy on security markets.

In order to reduce the trading risks, portfolio-
insurance-based strategies are likely adopted by
investors. Portfolio mnsurance is a way of investment with
the constraint that the wealth can never fall below a
pre-assigned protecting wealth floor. The optimal trading
strategy for a constant floor tums out to be the
popular Constant Proportion Portfolio Insurance (CPPI)
strategy (Black and Perold, 1992, Perold and Sharpe,
1988) and can be expressed as:

X7 ml(Wt - F)
where:
X, The amount invested mn the risky asset at tume t.
W, = The wealth at time t.
m; = A constant risk multiplier.
F = The floor.
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This optimal strategy states that one should invest
more m the risky asset when the wealth mncreases. In
practice, a mutual fund manager generally sets up a
performance objective in terms of wealth or return at the
beginmng of an mvestment period. If a fund manager
follows the CPPI strategy, he will have a greater chance of
failing his almost reached goal when current wealth is
closed to the goal. The major reason 1s that CPPI strategy
only considers the floor but does not take the goal state
into account, while fund managers do have the goal state
i mind during the investment process.

Evidences show that an investor will change his
risk-attitude under different wealth levels. CPPI strategy
demonstrates this phenomenon. In addition, some studies
showed that fund managers change their risk-attitudes
based on their performance compared to the benchmarlk.
However, there are contradictory observations among
these studies. Some studies observed that fund managers
take risk-seeking behavior when their performance is
worse than the benchmark while some other studies
observed that fund managers take risk-averse behavior
when their performance is worse than the benchmark.

These contradictions m fact can be explained by
portfolio  insurance perspective and goal-directed
perspective, respectively. Goal-directed perspective
proposes that an investor in financial markets waill
consider certain investment goal. A goal-directed investor
will take risk-seeking behavior when the distance from
current wealth to the goal 1s large and will take risk-averse
behavior when the distance from current wealth to the
goal is small. Obviously, a CPPT investor's risk-attitude
changing direction 1s opposed to the nisk-attitude of a
goal-directed investor.

The author of this study, therefore, constructed
a Goal-Directed (GD) strategy (Chen and I.iao, 2006)
x, = m,(G -W)) under constraint W, <G, where, G 1s the goal
and m, is a constant. The concept of GD strategy can also
be supported by Browne (1997). In addition, the author of
this article combined the portfolio insurance constraint
and goal-directed constraint as F<W,<G to construct a
plecewise linear goal-directed CPPI (GDCPPI) strategy
(Chen and Liao, 2006), x, = m(W, - F), F<W.,<M and
%X, =myG - W), M<W,<G. The M =(m F+m,G)/(m,+m,), is
a wealth position at the intersection of GD and CPPI
strategies. This M position guides investors to apply
CPPI strategy or GD strategy depending on whether the
current wealth 18 less or greater than M, respectively. In
addition, if m,-, the piecewise linear GDCPPT strategy
reduces to the GD strategy and if m,-<o, the piecewise
linear GDCPPI strategy becomes the CPPI strategy. That
is, the piecewise linear GDCPPI strategy is a generalization
of both CPPI and GD strategies.

Since, the essential structure of Learming Classifier
System (L.CS) technology (Holland and Reitman, 1978) can
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contain multiple patterns in each classifier, this study
applies this technique to implement the activities of
pattern management. This study applies the LCS
technique to generate piecewise linear GDCPPT strategies.
In order to show, the superiority of L.CS technique, this
study compares the competence of three techmques,
which are Browman motion technique, GA technique and
LCS technique. Experimental results show that T.CS
technique outperforms GA technique and further GA
technique outperform Brownian motion techmque in
generating piecewise linear GDCPPI strategies.

MATERIALS AND METHODS

Investment strategy: Investment strategies show the
investment ways, which basically are selection, timing and
allocation strategies. The investment strategies can also
be called as trading strategies. Investment strategies can
be classified by portfolio insurance perspective and
non-portfolio insurance perspective. Typically, investors
will face a trade-of between returns and risk. When the
risk 18 not easy to control or predict, to protect investor's
wealth becomes very important, which introduces the
Portfolio Tnsurance (PT) strategies in 1980s, such as the
CPPI strategy.

CPPI strategy: Assume there are two assets: a risk-free
asset such as a T-bill and a risky asset such as a stock.
Let the stock price dynamic be:

dP/P, = udt + 0dZ,

where

p = Themean of retumn rates.

o The standard deviation of return rates.
dZ, = A Brownian motion at time t.

The portfolio wealth dynamic then is:

dW, =W dt + x(pdt + 0dZ,)

where:
The rigsky-free rate of return.
X, The dollar amount invested in the risky asset.

Suppose an investor tries to maximize the growth rate
of expected utility of the
portfolio insurance constramt The problem becomes
(Grossman and Zhou, 1993).

final wealth under the

.1
Sup lim T InE[yU(W;)]

SLW, 2F,vt<T,

(1)
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where x denotes the set of admissible trading strategies,
O<y<1 and F=0 is the floor. If F is fixed, the optimal
strategy to the above optimization problem is:

u
-~ (W, -F 2)
oy W
Equation 2 can be simplified as:
¢, =x, =m (W, -F),W, > F, 3
where:
S I
L da-y

can be regarded as the investor's risk multiplier, F is the
protecting floor. This Z, is the popular CPPI strategy. The
CPPI strategy directs mvestors to put more capital into
risky assets when current wealth 1s larger than floor and
put less capital mto risky assets when current wealth 1s
closer to the floor.

Risk attitudes: Evidences show that an mvestor will
change his risk-attitude under different wealth levels. In
particular, studies showed that fund managers change
their risk-attitudes based on their performance compared
to the benchmark. However, there are contradictory
observations among these studies. Some studies
(Busse, 2001; Chevalier and Ellison, 1997; Tayler, 2003)
observed that fund managers take risk-averse behavior
when their performance is worse than the benchmark
(low wealth risk aversion), while some other studies
(Brown et al., 1996, Jackwerth, 2000) observed that fund
managers take risk-seeking behavior when their
performance 1s worse than the benchmark (lugh wealth
risk aversion). These two types of risk-attitude are
described as follows.

Low wealth risk aversion: An investor will become
risk-averse when his current wealth 1s low and will become
risk-seeking when his current wealth is high.

High wealth risk aversion: An investor will become risk-
averse when his current wealth is high and will become
risk-seeking when his current wealth is low.

The goal-less CPPI strategies demonstrate the low
wealth aversion phenomenon  Goal-directed
perspective proposes that an investor n fimancial markets
will comsider certain mvestment goal. A goal-directed
mvestor will take risk-seeking behavior when the distance
from current wealth to the goal (goal distance) is large and

risk
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will take risk-averse behavior when the goal distance is
small. Although, low wealth nisk aversion can be explained
by the CPPI strategy, high wealth risk aversion can not be
explained by the CPPI strategy. We argue that these
contradictions can be explained from two perspectives:
the portfolio msurance perspective and the goal-directed
{(or goal-seeking) perspective. That is, low wealth risk
aversion can be explained by portfolio insurance
perspective. High wealth risk aversion can be explained
by goal-directed perspective and will be exploited as
follows.

Goal-directed strategy: In study Browne (1997), one of
the mvestment problems is to maximize the survival
probability in danger zone or to maximize the probability
of reaching the goal before reaching the bankruptey point.
The model can be described as following.

m}?XP(Ta >T,L8ta < W <b<§, {4
where:
x = The set of admissible strategies.
P(s) = The probability function.
a = The bankruptcy point,
T, = The escape time when W, = a.
T, = The escape time when W, = b.

The safe point and 1s generally set up to be c/r.

With ¢ being the minimal consumption and r being
the risk-free rate of return. This model tries to find an
optimal trading strategy which minimizes the probability
of reaching the bankruptcy point a before reaching the

goal b. The optimal strategy turns out to be:

2r
w—r

X, = (S-W,) (5)

where, p 15 the mean of return rates for the risky asset. If
b-s 1n fact can be regarded as the goal G that an mvestor
wants to achieve. Then the author of this article defined
a Goal-Directed (GD) strategy (Chen and Liao, 2006) as:

M, =%, =m,(G -W,), W, <G, (6)
where:

m, =——

u—-r
1s a constant.

The GD strategy shows that an investor should take
ariskier action when goal distance (i.e., the distance from
current wealth to the goal) 1s large and should take less
risky activity when goal distance is small. This behavior
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Fig. 1: The piecewise linear GDCPPI strategy (Chen and
Liao, 2006)

15 consistent with the lugh wealth risk aversion. In other
words, the lugh wealth risk aversion can be explained by
this GD strategy.

Piecewise linear goal-directed CPPI strategy: As we
have noted that investors seem to have two different
types of wealth risk aversion: the low wealth risk aversion
and the high wealth risk aversion. Intuitively, investors
will take different strategy when they posit different risk
attitude. That 1s, if their risk attitude 1s low wealth risk
aversior, they will adopt CPPI strategy. If thewr risk
attitude 1s lugh wealth risk aversion, they will adopt GD
strategy.

Recall that the constraint of CPPI strategy, W,2F, 1s
different from the constraint of GD strategy, W,<G. In
addition, the objective of CPPT, maximizing the growth rate
of certain utility, 1s different from the objective of GD
strategy, maximizing the possibility of reaching the goal
first. Combining the 2 constraints F<W,and W.<G, a
new problem with constraint F<W,<G is derived. This
new problem can be regarded as containing two
objectives, which are composed from the objectives of
CPPI and GD strategies. The CPPI and GD strategies are
depicted in Fig. 1.

We can see that CPPI strategy only considers the
floor and GD  strategy only considers the goal. In
addition, there 1s a wealth position M projected from the
intersection of these 2 strategies and the value of M can
be calculated by:

_mF+m,G

M @)

m, +1m,

M seems to be a natural dividing peint for changing
strategies. Since, CPPI considers only the floor F but not
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the goal G, an investor can apply CPPI strategy when
W, <M. On the other hand, since GD considers only the
goal G but not the floor F, an investor can apply GD
strategy when W,>M. Then the author of this article built
a piecewise linear GDCPPI strategy (Chen and Liao, 2006)
as:
O,W, <F

m, (W, —FL,F<W, <M
m,(G - WM< W <G.

8 =x ()

t t

It can be seen that the pilecewise linear GDCPPI
strategy B, combines portfolio insurance perspective and
goal-directed perspective, as the segments la and 2b in
Fig. 1. Note that 8, is a generalization of both CPPL
and GD strategies. In particular, if m, -, M = (m,F +m,G)/
(m, +m,) = F and the constraint M<W,<G for GD segment
will be F<W,<G. Therefore, piecewise linear GDCPPI
strategy reduces to GD strategy. If m,~eo, M = (m,F +m,G)/
(m, + m,) = G and the constraint F<W <M for CPPI
segment will be F<W<G. Therefore, piecewise linear
GDCPPT strategy reduces to CPPT strategy.

Traditional CPPI strategy 1s based on the assumption
of Brownian motion for stock prices. Browne's study
(Browne, 1997) for goal seeking objective also made this
assumption. When mvestors try to apply these above
strategies, the parameter values are generally obtained by
the long-term expectation method. That is, the mean and
variance of return rates are the long-term expectations
from lustorical data.

However, the historical data might not follow the
Browrian motion (Lo and MacKimlay, 1999). Better m, and
m, parameter values in piecewise linear GDCPPI strategy
might be directly obtained using other data driven
optimization methods with historical data. Genetic
algorithim is the method chosen to search better m, and m,
parameters values in this study due to its success in many
applications. In addition, technology of learning classifier
system will also be adopted to implement the GDCPPL
strategy for the reason of it can fit well for investor’s
investment process: build a strategy pool first and then
choice, execute and adapt suitable strategies.

Investment process: On the essential feature of
complicated investment environment, there are many
different investment strategies can be applied by
investors. However, 1t seems not to have a universal
strategy that can always be a victor under all dynamic
environment states. In a logical manner, each strategy has
its own features including advantages, drawbacks and
suitable application circumstances. This means that,
investors should first hold a pool of strategies and
choose a suitable strategy after prediction from the
pool agamst different environment states. The strategy
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Fig. 2: A Framework of security trading model

building activity in general includes the learning process.
Fig. 2 shows a framework of security trading model
(Liao and Chen, 2001 ).

Where, a learming module formulates the environment
patterns and the trading strategy rule set, a prediction
module applies the learned environment patterns to
predict the future trend and a selection and execution
module selects and executes the fittest trading rule
according to the prediction results.

Pattern management: Pattern 1s a recurrent structure,
where the structure consists of static relationships among
elements and dynamic behavior with some processes or
procedures. Problem solving by managing patterns
includes: pattern formulation/modeling/recognition, i.e.,
extract the recurrent components first and build the
relationships among them, pattern execution, pattern
variation/adaptation to fit the dynamic environment
states.

A basic pattern modeling and recognition method can
be described as following. A pattern generally consists of
two parts: the condition state part and the prediction state
part. In addition, a real environment state also consists of
two parts: the past state part and the future state part.
Therefore, we try to find out a suitable pattern that its
condition state can match the occurred environment state
and then applies its prediction state as the future
environment state. Suppose an occwred environment
states time series: X = {X,, X;......, X+, where, 1118 its size
and x, is the state at time n. Now we try to find a most
similar pattern: M, = {Xuus Koo Ko Kists Kizooos Xagd With
size utv, where its condition state 1), = {X,..1, Kpes s Xt
with size u and end sate x, is most similar to the current

state s, = {X_ 1 Xy - X, With size u and end state x,.
Therefore, the prediction part 1), = {%..1. %50 ..o ¥t With
size v and end state x,,, will be applied as the future
enviromment state s; = {X,... Xpo -...Xgr With size v
and end state x,., The way to choose the similar
pattern can apply the distance or offset of the
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distance between past pattern state and curent state
(Smgh, 1999a, b, 2001 ; Singh and Fieldsend, 2001).

However, the distance calculated by this basic
pattern modeling and recognition approach is a hard
distance and 1s not a soft distance. The hard distance in
this study means that a distance between 2 real numbers.
However, the soft distance in this study means that the
distance between two objects that allows some different
tolerance. That is, applying soft distance in pattern
recognition can allow more patterns to fit the current state
and to be the winner candidate further. The learning
classifier system is a technique that can provide the
similar mechanism of processing soft distance.

Learning classifier system: Since, Holland published his
first book about genetic algorithms and then he
constructed a cogmtive system (Holland and Reitman,
1978), which is the former of the learning classifier
systems, there are some difficulties of the Holland's
classifier systems (Wilson and Goldberg, 1989), such as
the bucket-brigade architecture, the mechanics of bidding
and payments and classifier syntax. In the First
international workshop on learming classifier systems, the
researchers (Smith, 1992) tried to define the field of .CS,
in which an I.CS equals a combination of a GA and
cooperativity. They also defined some major LCS 1ssues
include cooperation, discovery, representation, credit
assignment and internal processing (for issues of memory
usage). After that Wilson (1994) examined the basic level
of classifier systems and presented a Zercth level
Classifier System (ZCS). Soon later, Wilson (1995)
extended the ZCS mto an accuracy-based XCS classifier
system which embeds reinforcement learning technique
and removes the message list component but adds the
prediction array and an action set to improve the
effectiveness of classifier systems.

Basically, Holland's classifier systems contain
three functional components and 2 dataknowledge
components. The three functional components are
detectors/effectors, bidding and credit apportionment
and evolutionary component. The 2 data/lmowledge
components are message list and a set of classifiers. Each
classifier is formed by a bit string with a condition part
and an action part, just like a production rule. The bit
string of condition part is composed by three codes: 0, 1
and #. The code # means don’t care. Suppose a condition
part 18 encoded as 1# The two real states of 10 and 11 are
also matched by this condition part. In addition, if a
classifier’s condition part is encoded as 1## for a 3-day
long price dynamic series. The string of 1## mn fact
includes 4 price dynamic patterns, which are 100, 101,
110 and 111. If 1 means price up and 0 means price
down, Fig. 3 shows the contaimng ability of classifier
structure.
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Therefore, the application of the don’t care encoding
can support the mechamsm of soft distance in pattern
recognition. This mechanism allows more classifiers
(patterns) can match the environment state to participate
the following winner competition.

The internal action of learming classifier system can
be described as following. Firstly, the classifier system
detects the envirenment stimulus/states, encode them
mto bit strings and put them into the message list.
Secondly, the classifier system produces a matched
classifier set in which each classifier's condition part is
matched with the environment message. Thirdly, the
classifier system starts the iterated bidding and payment
process to determine the final action against the
environment, execute the action and pay the rewards to
the contributive classifiers. Fourthly, when the system’s
performance could not reach some thresholds, then the
classifier systems trigger the evolutionary mechanism
(i.e., GA) to generate new classifiers.

The Wilson's XCS system encodes the environment
messages into bit strings and produces the matched set
of classifiers. The XCS system then produces a prediction
array and an action set based on classifier's accuracy.
Then XCS system determines the winner action of the
prediction array, executes that action against the
enviromment and meakes the creditrewards apportionment
process to the classifiers in the action set. When the XCS
system’s performance could not reach some thresholds,
the evolutionary mechamism (1.e., GA) 15 then triggered.
Thus, the XCS system, could handle multiple environment

states within a set of classifiers, could improve the
Holland's classifier systems and get good performance
and embed the reinforcement learning techniques and
evolutionary mechanism against the environment states,
which get the potential capability of real time or nstant
learning. Figure 4 shows the architecture of trading
learning classifier system (Liao and Chen, 2001).
Financial applications of genetic algorithms have
shown promising results in Bauer (1994), Colin (1994) and
Deboeck (1994). This study will apply genetic algorithms
to search satisfactory m, and m, strategy parameter values
in piecewise linear GDCPPT strategy. In addition, there are

Cond.ltlon Condition Price dynamic
encoding containing pattern
100 /\
% A
1##
\ 110 /\
1 /

Fig. 3: The contaimng ability of classifier structure for
presenting multiple price dynamic patterns

Environment
Environment
i states Environment
rovaris
Messages
Initialization Matching Action : Credit
/ wet Execution Apportionment
Match P \
set N
selection Previous Credit
slep action set updated
action set
classifier set lfm.dm Prediction
prediction array array
Instant
Evolved new classifiers evolutionary
mechanism
Trading prediction Trading execution
and selection activities and learning activities

Fig. 4 The architecture of trading learning classifier system
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also some financial applications for applying the L.CS
technicue (Beltrametti et al., 1997; Liao and Chen, 2001).
Basically, an unified pattern can not handle the problem
under the dynamic environment. Therefore, a mechamsm
which can provide the function of pattern evolution or
adaptation is most important. Leaning classifier system is
suitable to process pattern recognition from its essential
structure and also has the capability to evolve or adapt
patterns against dynamically changed environment by its
essential evolution mechanism. Since, the XCS systems
obtains the above capabilities, the study adopts this
technique to deal with the pattern evolution for piecewise
linear GDCPPT strategy.

RESULTS AND DISCUSSION

The main experimental purpose in this study tries to
justify that we can find out better piecewise linear GDCPPI
strategy by LCS techmque (denoted as LCS strategy)
than strategy found by GA techmique (denoted as GA
strategy) and further better than strategy generated by
Brownian technique (dencted as B strategy). This
purpose can also show the superiority of LCS for pattern
evolution.

Some parameter values are derived by two pretests.
The first pretest tries to decide a suitable pair of year
length and v values for Brownian technique, where vy is
defined in Eq. 1. The vear length is decided to calculate
the expected values of return rate p and variation o®. In
turn, the p, o and y will be used to calculate the
parameters m, and m, in piecewise linear GDCPPI strategy
for Browman technique, where m, 1s defined in Eq. 3 and
m, 1s defined in Eq. 6. The pretest shows that the year
length is 8 and vy is 0.1. The second pretest tries to decide
the learning length for GA leaming and it shows that the
better learmng length 1s 100 trading days.

Five stocks are randomly selected as experimental
targets from 30 components of Dow Jones Industrial
Average (DJIA), namely, American International Group
(AIG), IBM, Merck (MRK), HP (HPQ) and Exxon Mobil
(XOM). We also randomly select 5 starting learning dates,
which are 1999/12/13, 2001/6/6, 2002/2/27, 2003/4/28 and
2004/12/03. Three different floors in the experiments for
plecewise linear GDCPPI strategies are pre-assigned and
calculated by the ratios of floor to mitial wealth, which are
0.7, 0.8 and 0.9. Also, 3 different goals m the experiments
for piecewise linear GDCPFI strategies are pre-assigned
and calculated by the ratios of goal to initial wealth, which
are 1.1, 1.2 and 1.3. The testing length is always 30 days.
The risk-free rate of return is 0.0001 per day. There are
(5x5%3%3=) 225 cases and then generates 225 samples for
statistical tests.
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Experiment design

GA experiment design: The purpose of applymg GA
technique in this optimization process is to search
satisfactory strategy parameter values m, and m, to attain
better investment performance, i.e, the rate of return in
this experiment. In order to show GA's capability, we
execute GA searching for 225 circumstances by 5 stocks,
5 testing dates, 3 floors calculated by ratios of floor to
initial wealth and 3 goals calculated by ratios of goal to
initial wealth as defined above. The training length 15 100
days as derived from the above GA pretest.

In addition, each m, and m, strategy parameter will
both be encoded as a 7 bit long gene in a GA
chromosome. Therefore, the length of each chromosome
is 14 bit long. Tf the decimal value of each gene is D, each
gene will be decoded as wvalues within (1.0, 13.7)
calculated by (10+D)/10. Moreover, better m, and m,
values mmplies better investment performance of piecewise
linear GDCPPI strategy. The fitness function is to
maximize the mvestment rate of return. The other
important GA parameters are as follows: The population
size 18 40, each run executes 20 generations, crossover 18
two-point, mutation rate is 0.001 per bit and selection
method 1s integral roulette wheel selection.

Learning classifier system experiment design: The
purpose of applying L.CS is to evolve a pool of piecewise
linear GDCPPI strategies in order to get better investment
performance than the performance of GA and Brownian
techniques. That the classifier 1s encoded as 2 parts: the
condition part and the action part. In environment level,
the condition part is composed of 4-day long price
dynamic ratio (i.e., the growth rate in (-12.8~12.7%)) and
the action part is composed of m, and m, parameters of
plecewise lmear GDCPPI strategy. In internal level of
LCS, the condition part i1s encoded as a32bit long
(4 day=8 bits) string and the action part is encoded as a
14 bit long (2 parametersx7 bits) string. Each gene in
action part will be decoded as value within (1.0, 13.7), the
same as 1n the GA experiment. That 1s, for each advancing
trading day, the I.CS system searches qualified previous
adjacent 4 day price growth rates and the wimner
classifier will suggest suitable m; and m, parameters that
investors can attain better investment performance.
Therefore, the LCS system here adopts the sliding
window (4 day long m this study) approach to continue
recognize and evolve the investment patterns with
action suggestions. Figure 5 shows the encoding
format of each classifier for piecewise linear GDCPPI
strategy. The other LCS system parameters are: total
muns are 600, max random state lear ning steps are 100;
max 1insample state learming steps are 100, total
learning steps are 60,000, population size is 4000; last
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Fig. 5: The encoding format of each classifier for
piecewise linear GDCPPT strategy

experiment’s GA learming iterations are 18,972 with GA
learming rates 0.3162; probability of don’t care bit (#) 1s
0.150; crossover rate 1s 0.9; mutation rate is 0.03. The
other trading setup is the same as the GA experiment
design.

Experiment results: We use the paired-samples t-test to
validate whether T.CS strategy can outperform GA
strategy and further GA strategy can outperform B
strategy. The null hypotheses are: H,: ro1,, (0)z101,04 (6)
and H; roi, (8)>roi;, (6). The testing results are
described as following. For the first hypothesis, the
t-value for the whole 225 samples in testing period 1s
-3.924. The sigmficance value (p-value) 15 0.000, which 1s
statistically significant. For the second hypothesis, the
t-value for the whole 225 samples in testing period is
-2.303. The sigmficance value (p-value) 1s 0.022, which 1s
statistically sigmificant. Therefore, we can reasonably
reject these 2 null hypotheses. That is, the LCS strategy
can outperform the GA strategy and further the GA
strategy can outperform the Browman strategy.

CONCLUSION

Pattern formulation and recognition are logically
applied by most of mvestors. However, it 1s hard to
handle this job under dynamic changed security markets.
Although, applying GA technique in security trading
market has remarkable outcome 1n literature, 1ts essential
structure still has drawbacks to handle the dynamic
changed environment. For the essential structure of
learning classifier system technique, it can generate a pool
of trading strategies and can evolve this strategy pool to
fit the dynamic changed security market. This study then
applies the L.CS technique to testify its superiority. This
study adopts the piecewise linear GDCPPI strategy as the
trading strategy, which this strategy 1s proposed by the
author of this article before. This trading strategy not only
tries to protect the floor wealth, but also to protect the
goal wealth. Tn addition, this strategy is a general trading
strategy for the CPPI strategy and goal-directed strategy.
This study also makes some experiments to show that the
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LCS strategy can outperform the GA strategy and further
the GA strategy can outperform the Browmnian strategy
significantly. These testing results show the superiority
of L.CS technique for the pattern management.

Our future research will be on the combination of LCS
and Genetic Programming (GP) technique. Since, the
essential format of classifier is of fixed length, it therefore
has the problem of pattern scaling and flexibility. The
essential structure of GP is of dynamic length. Therefore,
the combination of I.CS and GP is a reasonable approach
to enhance the performance of pattern management in
trading strategies.
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