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Abstract: PageRank is one of popular web page ranking mechamsms, which 1s used by Google. It works based
on link analysis. The computation of existing pagerank consumes a very significant time, i.e., in the scale of
days, due to the fact that it has to find Eigen values of billion of web pages off-line. Previous attempts on
reducing the computation time by shorting the time for Eigen value convergence have been carried out based
on several methods, such as extrapolation, sparse linear system and quadratic extrapolation. This study
proposes a new approach, ie., using Quotient Rayleigh in the power method in order to shorten the

convergence of dominant Eigen values. This modified power method resulted in a sigmficant improvement on
PageRank performance. The interpolation over n-size web pages also shows a consistent performance of the

proposed approach.
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INTRODUCTION

Popular search engines, such as Google, Yahoo and
Altavista have played an important role in the World
Wide Web. Search engine has been a killing application
for internet users. A world wide web without a search
engine 1s ummeaginable nowadays. The search engine
allow users to find certain information in the gigantic
hyperspace database as web faster than it can be inagine
before. Search engine also ensures that it produces
relevant and important query results, which are achieved
through a democratic ranking system (Langville, 2005).
Google as the top most search engine in the internet
nowadays, states that it has crawled through =4.2 billion
web pages. This 1s done using their popular PageRank
method as its ranking system.

The calculation of page ranks using the PageRank
method is currently done offline in Google. Crawler results
are converted mto Markov chains, with the size of nxn.
With around 4.2 billion pages handled by Google, this
Markov chains 1s a gigantic chains. The Pagerank method
calculates and ranks an eigen value of each web page.
This decremented order of eigen values represents the
relevance and importance of the query results. This
calculation takes >3 days. With the mereasing mumber of
web pages, this calculation will tend to take longer in the
near future.

This research proposes the use of Quotient Rayleigh
to find the dominant eigen value, which mnproves the
convergence time of Markov chains calculation. With the
decreasing of convergence time, it 13 expected to reduce

the PageRank computation time to <3 days, which means
that the PageRank method performance will be improved
sigmficantly.

MATERIALS AND METHODS

PageRank was fust developed by Larry Page at
Stanford University (Vise and Malseed, 2005). Later on,
the research was jomned by Sergey Brin on 1995 and
continued as part of a research project about a new kind
of search engine. This later produced a functional
prototype, called Google. While, just one of many factors,
which determine the ranking of Google search results,
PageRank becomes the foundation of web search engines
of Google since then. PageRank 1s a method that Google
used to measure the relevance of a web page to the query
term given by user. It i1s based on citation analysis
founded by Garfield (1979) at the University of
Permsylvama. When all searclung result factors, such
as title, tag and key words have been used, then
Google uses PageRank to shows the order of importance
of pages that will be displayed as in the main search
results.

In principle, search engine does the following
processes when processing a user query:

»  Finding pages that match the given key word (s)

*» Ranking the pages locally based on traditional
information retrieval methods, such as key word
matching, keyword closeness, hypertext tags level,
occurrence frequency, ete.
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Merging this result with the global ranking scores
produced through PageRank as follows:

PR(T) PR(T)  PR(T)

PR(A)—(I—d)+d{

C(T) C(L) C(T,)
Where:
PR{A) = Page rank of page (A)
D = Damping factor (0.8)
PR(T,) = Page rank to page (T,)
C(Ty) = Number of link in page (T,)
PR(T,)/C(T,) = Ratio of pages have link to (A)

Markov chains: Determination process of PageRank
begmns by forming an nxn matrix, called hyperlink matrix
A, Where, n 18 the number of web pages. If a web page 1
has link %121 to other web pages and web pages 1 has a
link to webpage j, then element at line- 1 and column-j of
matrix A (A1) = 1/, while other element of A1 = 0.
Therefore, Aij represents the likelihood of a random surfer
may choose a link from webpage i to webpage j. This
matrix of link graphs is called a markov matrix or markov
chains. In this research, the markov matrix i1s obtained
from the dataset from previous researches, where markov
matrix is stochastic and irreducible (Austin, 2006).

A markov chain is a line of random varable, X1, X2,
X3,.... given a markov property that is a state that
currently happens, where past and current states are
independent and unbounded.

Pr(¥ o %X, ..., X, X)) -Pr XotlxX %)

A probability of moving from state 1 (page 1) to state
] (state 1) m n steps (click) 13 defined as:

P =Pr(X,=j| X,=1)
and for 1-step transition can be defined as:

Pi =Pr(X, =] X, =1)

The markov matrix 1s calculated until 1t produces
convergence of eigen values. A markov chain 15 called
ergodic if there 1s a path from a state to another state, or
1f all states are aperiodic and positive recurrent, given that
the probability is not zero.

For any markov chain that is ergodic, there is a
unique average number of visitations for each state. It
means that for a period of time, a number of visitations of
each state 1s proportional regardless the original state of
the visitation (Austin, 2006).
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Eigen vector and eigen value: If A is a n*n matrix, then a
nonzero vector x in R® is an eigen vector of A if Axis a
magnitude multiplication of x that 1s:
Ax = Ax (1)
for any scalar A. 4 is eigen value of A and x 1s eigen vector
that corresponds with A. To find an eigen values of matrix
A of size nxn, Eq. 1 can be rewritten as follows:
Ax = ATx (2)
or equally written as:

(AI-A)x=0 (3
In order the scalar A is considered as an eigen value,

there should be a nonzero solution of this equation 1s:

det (AL-A) = 0

The scalar that fulfills this equation is eigen value of
A This 1s called a characteristic equation of A. Thus, det
(AI-A) is a polynomial of A that is, a characteristic
polynomial of A.

If A 18 matrix of size nxn, therefore the characteristic
polynomial of A should be n and coefficient of A" are 1.
Therefore, the characteristics polynomial of matrix nxn

has the form of:

det (AL -A)= A"+ ¢, A"+ +c,

Power method: In practical problems, computing large
matrix to find eigen values is a complex computation
problem, that implies time and computation resource
COMnsUmIng.

In this research, we propose the use of a simpler
algorithm to find the eigen values, that is, power
method. Power method produces approximate eigen
values given the highest absolute value of corresponding
elgen vector.

An eigen value of matrix A is called dominant eigen
value of A if its absolute value 13 bigger than the rest of
absolute eigen values. The eigen vector that corresponds
with the dominant eigen value is called dominant eigen
vector of A.

Let assume A is matrix of size nxn that can be
diagonalized by dominant eigen value. If x, 1s any
non-zero vector in R°, then vector:

AP %, )]
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is usually a good approximation of dominant eigen vector
if exponent p is big (Langville, 2005). Tteration process of
such vector computation 15 called power method. Power
method most of the time produce vector with large
componennt.

To solve this, the approximation eigen vector is
scaled down in each iteration so that the component
will be positioned between +1 and -1. This can be
achieved by multiplying the approximation eigen vector
with its mverse component that has the biggest absolute
value.

For example, given matrix A that has eigen value A
and x 1s correspond eigen vector. If <> represents the
result in Euclids, then:

<X AX > <X AX> 7L<X,x> 5

XX XX XX

Therefore, if x 1s the approximation of dominant
eigen value, then the dominant eigen value of A, can be
approximated by:
<X, AX >

XX

A=A

1

which 1s called Quotient Rayleigh (Gumerov, 2003).

Figen values estimation using power method: The
proposed solution 1s focused on improving power method
which is utilized for estimating eigen values during
Pagerank calculation. In Fig. la (Brin and Page, 1998), the
iteration will stop when the eigen value is convergence on
corresponding eigen vector. While, in Fig. 1b, there is a
filtering mechanism on the eigen value, so that the eigen
value resulted from Quotient Rayleigh will move faster
toward the convergence value. And this 1s proven.

The approximation of eigen value by power method
uses a simple iteration, which continues until it reaches a
value where, it is convergence. The value is called eigen
value. Given a markov matrix A with the size of n>n with
an n-size nomn-zero eigen vector, so that

Ax, =hx fori=1,23,..n
Where:
] =[] > |25 | >

oy 5

1f u" 13 any vector where

[, =1
2
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Fig. 1: Flowchart of eigen values estimation with power
method, (a) existing method and (b) proposed
method

(Given a symmetrical matrix A, Eq. 4 can be computed
as follows: While not convergence {norm(v*", @) do

& 2 Ap®
- 1
Ck+1*AV(k+1)
2
& = Ck+lv(k+1)

End while.
It clearly shows that u*™ = ¢,,, Au®, therefore:

u = ¢, Au®”

u® = czAum =0,¢ AR

u™ = ckck_l....clAku(U)
=d, A"u®

So that,

k
dy :H]=1CJ
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Because eigen vector is unbounded-linear, then any
vector can be made as a linear combmation from eigen
vector. Hence,

n
o _
u® = chg(l
i=1

then:
u® =g AF (Zn: OLIXJ
1=1
=d, (i otlAkxl]
1=1
= dk {i 0”17\‘1kx1 ]
in1
and because
o], =1
then:
1

. —
an®,

If it 18 assumed that:

A=k, =k ==
‘7»1‘> 7L1+p Jfori=123,...,n—-p
P
pCAERY
1=1
Then,
k k
o = A 211 i 1+Z p+1C(‘J7\‘J j
k
AN TR |
nt = (W) le ! ‘+ZJ p+l (W) !
21 1 1+ijp+1aJ(m) X ,
thus,
k
.
u =y, Zocx +0
A"l
where, |v,| tends to be constant even if k—. Every
linear combination of the eigen  vector that

corresponds with the same eigen value is also also eigen
vector.

Then, base on the Eq. 4, the eigen value computation
algorithm using power method 1s scaled down using this
mechanism. This will result in the order of %, X, , X, ,....
which, their approximation against dommant eigen vector
is increasingly improved.

Eigen value estimation using modified power method: The
motivation 1s to ensure that the convergence of eigen
values can be reached faster than the previous method.

The eigen value approximation, i.e. dominant eigen value,
by adopting power method with Quotient Rayleigh is the
major issue 1n this research. Quotient Rayleigh 1s used
because matrix A 18 symmetrical (Chowdury and
Dasgupta, 2003).

Given any vector v and a value u so that ||Av-pv|, is
minimum. By writing k = v? Av and assuming that ||v|’
(Wilkinson, 1965), we can conclude that:

||Av - I.LV”Z = (Av— ) (Av — 1v)
=vIATAY — kT o+ (uf - kY u - k)

If it is observed that the mimmmum can be reached for
p =k = v" Ay, the quantity is introduce as Quotient
Rayleigh, which corresponding to v, which we written as
pr. The word Quotient 1s used 1if and only if the scalar of
v cannot be obtained, then it should be v'Av/A ™y, it is
clear that if:

AV—p . v=m,
therefore,
viomg =0

For any |, it can be obtained:

ml,=¢)

Jem—
Then,

AV — pgv :T]R:( T]RHZ = 8)

Which 1s a circular disc with its center p, which has
a small radius corresponds to any given .

Given any normal matrix A, Av - pgv = 1, where ||v||,
=1 and ||n|; = €. Tt is known that n-1 eigen values satisfy
the relation: |4, - pg|>a, where, « is a constant. Then a
relevant eigen values Ay, A,......, A, can be obtained. If A
is normal, then it has an eigen vector ortonormal system
%, (1=1,...., n), thus, it can be written as:

z

v= chlxl, 17

Given the previous equation:

n-= Zo'n(ll — Mg )%,
1
so that:

:Zn:az |2
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therefore, it can be deducted that:
o) ® zl—zn:|0:1| 21-¢’/a’
2

if 6 is defined with the following relation:
_ 18
o = oy |e
hence,
n
ve™ = loy|x, + > ek,
2
then:

Hve'18 flez = (o, | - 1 +i‘c¢1|2
2

4
€
A4 e & gl
(1+‘0¢1|) a- a a

Therefore, if a>e, then ve™ is the best approximation
on x,. The constant factor ¢ *° is a less significant factor.
As the value ¢ tends to decreased, then the result will
also become smaller. When & 1s equal to €, then the result
will be insignificant. Hence that L is Quotient Rayleigh
(Gumerov, 2003).

For any symmetrical matrix A, a temporary
assumption 1s used on eigen matrix x,. Then, the iterative
computation is conducted in order to obtain the
approximtion over the corresponding eigen vector with
eigen value 1. In each iteration a Quotient Rayleigh 1s used
to know the maximum eigen value, so that it can be
convergence.

While not convergence abs (1, - ) do

G A ®
Ck+lzﬁv(k+1)
2
_ve
1, Hu(k)H

percent estimation of dommant eigen values

k+l k+1
w2 gy

End while.

Table 1: Dataset for testing

RESULTS AND DISCUSSION

To measure the performance of the proposed power
method, several tests have been conducted using a
number variety of dataset. The result 15 also compared
and analyzed agamst the existing power method to find
the accuracy of the computation model in processing
PageRank. This test also measures the efficiency of the
proposed method in producing the dominant eigen
values. To project the behavior of the system that uses
the proposed model in n-size pages, we do an
interpolation.

Experimental data: This experimentation 1s carried out by
using dataset from previous researches. Table 1 explains
the sources of the dataset used in the testing scenario.

Standford Umversity datasets were crawled in 2002
and used by Sepandar D. Kamvar in his research on
ranking the search results of search engine. The datasets
that were downloaded for the test are Stanford and
Stanford Berkeley web matrixes. Stanford web matrix has
281, 903 pages or around 2.3 million paths with the size of
64.2 MB. While, Stanford Berkeley web matrix has
683, 446 pages or around 7.6 million paths with the size
of 125.8 MB.

Toronto University datasets were crawled in 2004 and
1s used by a number of researches at Toronto University.
There are 34 datasets that has been used for the testing,
with the size starting from 742 until 11, 659 pages. These
datasets was crawled based on the keyword searching
and each has 3 separate files which also use for other
researches related to path analysis.

Milano University datasets were crawled between
2000 and 2005. Datasets were crawled by many researches
from various umniversities. It contains several datasets,
starting from one that has 325, 577 pages until 1, 382, 909
pages. Table 2 shows the dataset from University
Milano.

Result and analysis: The tests on the proposed method
have been conducted at the Software Engineering
Laboratory of ITS (Institut Teknologi Sepuluh Nopember).
The tests were conducted using a PC Intel P4-3 Giga Quad
Core with 5 GB memory. Table 3 shows the result of the
experiment, where power method with Quotient Rayleigh

Dataset Location No. of pages Owner
Stanford Web Matrix, 2002 http://cs.stantord. edu 281, 903 Sepandar . Kamvar
Stanford Berkeley Web Matrix, 2002 http://cs.stanford. edu 683, 446 Sepandar D. Kamvar

Crawler
WebGraph

http://cs.toronto. edu
http://law. dsi.unimi.it

3,340 to 11, 659
325, 557t0 118, 142, 155

Panayiotis Tsaparas
Laboratory for web algorithmics
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Table 2: Dataset from University Milano
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Graph Crawl year Nodes Arcs Provider
Cnr-2000 2000 325,557 3,216,152 NagaokaUT
Eu-2005 2005 862,664 19,235,140 DSI
In-2004 2004 1,382,908 16,917,053 NagaokalUT
Boldi (2004)
Tabel 3: Computation time of pagerank
Page rank with existing Page rank with modified

Dataset. power method power method

Efficiency
Name Pages Iteration Time (sec) Iteration Time (sec) (%)
Randomized algorithms 742 82 0.0309 75 0.0160 48.22
Cormputational cormplexity 1075 89 0.0160 78 0.0150 6.25
Automobile industries 1196 93 0.0320 77 0.0160 50.03
Table tennis 1948 78 0.0320 51 0.0160 50.00
Moon landing 2188 93 0.0470 77 0.0150 68.09
Computational geormetry 2292 33 0.0160 30 0.0150 6.25
Affirmative action 2523 98 0.0470 77 0.0160 65.98
Net censorship 2598 93 0.0629 78 0.0159 74.72
Roswell 2790 9% 0.0620 89 0.0320 48.39
Jaguar 2820 96 0.0619 43 0.0159 74.31
Gun control 2955 96 0.0779 73 0.0320 58.92
Classical guitar 3150 87 0.0780 81 0.0319 59.10
Armstrong 3225 89 0.0630 81 0.0310 50.79
Cheese 3266 91 0.0780 75 0.0309 60.38
Abortion 3340 95 0.0940 71 0.0310 67.02
Amusement parks 3410 90 0.0620 75 0.0310 50.00
Vintage cars 3460 88 0.0619 73 0.0309 50.08
Complexity 3564 83 0.0780 75 0.0309 60.38
Traq war 3782 88 0.0779 80 0.0310 60.21
Jordan 4009 93 0.0780 75 0.0310 60.25
Death penalty 4298 84 0.0940 74 0.0469 50.11
Geometry 4326 89 0.0790 77 0.0470 40.52
Globalization 4334 91 0.0930 53 0.0309 66.77
Shakespeare 4383 92 0.0939 85 0.0470 49.95
Alcohol 4594 93 0.1089 71 0.0309 71.63
National parks 4757 91 0.0940 69 0.0469 50.11
Recipes 5243 o1 0.1089 70 0.0469 56.93
Genetic 5208 89 0.1090 78 0.0469 56.97
Blues 5354 92 0.1250 80 0.0629 49.68
Basket ball 6049 78 0.1090 57 0.0469 56.97
Architecture 7399 o4 0.1870 75 0.0940 49.73
Movies 7967 85 0.1410 61 0.0620 56.03
Weather 8011 88 0.1720 63 0.0780 54.66
Search engines 11659 85 0.7179 71 0.5159 28.14
Stanford 281903 92 16.0780 42 6.0940 62.10
Cnr-2000 325557 90 11.9690 47 4.6719 60.97
Stanford berkeley 683446 93 28.1090 40 9.2340 67.15
Eu-2005 862664 81 50.5940 32 16.1710 68.04
In-2004 1382908 90 57.5780 41 20.2970 64.75

performs more efficient, in the term of computation time,
rather than the existing method, i.e. between 6.25 and
74.72%. Tt also shows that the number of pages is
corresponding to the computation time.

Table 4 shows the resulted eigen vector from
Pagerank algorithm using former Power Method and
Modified Power Method. Tt shows that both methods
produce identical eigen values. Which means that the
proposed methods behave.

Interpolation: The behavior of the modified power method
is also observed by conducting an interpolation over

109

n-size pages. The interpolation is conducted using SPSS
7 version 14. The behavior of Pagerank i1s observed based
on the power function. Figure 2 shows the behavior of
both methods.

Based on the power function, the behavior of
both methods is observed and analyzed, whether the
proposed method always performs better than existing
method.

This 15 proven as follow: from the statistical analysis

over the data using the tool, it can produce function of
each method.
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Table 4: Figen values of both methods on stanford dataset

Vector eigen Vector eigen
Metode pangkat kuoseien rayleigh
5.3336616e-007 5.3336616e-007
1.1717819e-004 1.1717819-004
8.2715887e-007 8.2715887e-007
5.3336616e-007 5.3336616e-007
8.5753614e-007 8.5753614e-007
3.8695920e-006 3.8695920e-006
6.7729037e-007 6.7729037e-007
1.2308450e-006 1.2308450e-006
3.5557744e-006 3.5557744e-006
1.3601884e-006 1.3601884e-006
6.0267646e-007 6.0267646e-007
8.1868437e-007 8.1868437e-007
1.8665718e-006 1.8665718e-006
3.2990891e-006 3.2990891e-006
5.5589956e-007 5.5589956e-007
5.3702230e-007 5.3702230e-007
1.8087374e-006 1.8087374e-006
1.4792320e-006 1.4792320e-006
707 Existing method
60+ —— Proposed method
504
L)
g 40
§ 304
A
204
104 .
0 1 1
281903 862664

Web page

Fig. 2: The computation time of pagerank on existing and
proposed methods with dataset =11.659

Y, = 6.841654919567834E-006 x"!* /7t

Yotag = 4.505598117253745E-006 x' 77400
Where:
Y,, = Y (computation time) functional equation of
pagerank using existing power method
Yoneg — Y (computation time) functional equation of
pagerank using modified poer method
X = Number of pages

Because the objective is to find any adjacent point,
then both equations 1s written as follow:

Y. Y

pm rayleigh

1.093797446996593

1.140876513258862 )

0.1814 = log( ™
X

1.518448266 = X1.0937D7446996893—1.140876913258862

x =0.00014026= 0

There is only one adjacent point present for the
equations, i.e., x = 0 and it is shown from Fig. 2 that the
function of proposed method 1s always above the existing
method. This means that it i1s always true that the
proposed method always performs better than existing
methods for any number of pages bigger than 0. Given the
number of existing pages in Google 1s 4.2 billion, it will
take the existing method around 7.54 days to find the
eigen values, while the proposed method will need only
1.75 day.

CONCLUSION

Ranking web page is the heart of search engine which
used for determining sigmficant searching results. One of
the best ranking methods currently is PageRanl, which is
used by Google. From the preliminary test on sample
dataset, it is shown that the advanced PageRank, which
makes use of Quotient Rayleigh in the computation of
power method performs significantly faster that is 64.4%,
than the existing method. The mterpolation also shows
that given the amount of existing collection of pages that
Google has the proposed method will reduce 25% of the
existing computation time. This is due to the computation
characteristic of Quotient Rayleigh, which allows the
convergence of eigen value to happen far earlier. There is
still a further research on observing the behavior of the
new method on a system that similar to the existing search
engines’ architecture, such as Google.
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