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Abstract: This study presents Markov models for analysis of availability and reliability for parallel repairable

system subject to three types of failure rates (e.g., human, hardware and software) and common cause failure
rate. The problem addressed 1s how applying a Continuous-Time Markov Chain (CTMC) to evaluate availability,
reliability and Mean Time to System Failure (MTTFs) for parallel system with repair. In this study, assumed that
the working time and the repair time of each component are both arbitrary distributed (e.g., Weibull,
exponentially distributed). The Markov method is used to develop generalized expressions for system state
probabilities, system availability, system reliability and system mean time to failure. A numerical example is
presented in order to illustrate the performance of the model.
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INTRODUCTION

Markov chain s a stochastic process that have a
finite states at time t under consideration that the chain
runs only through a continuous time, the basic
assumption of Markov chain is the transition from the
current state of the system 1s determined only by the
present state and not by the previous state or the time at
which 1t reached the present state.

Parallel can be used to increase the reliability of a
system without any change in the reliability of the
individual components that form the system. The
probability of failure or unreliability for a system with n
statistically-independent parallel components is the
probability that component 1 fails and component 2 fails
and all of the other components in the system fail.
Therefore, in a parallel system, all n components must fail
for the system to fail (Xie et al., 2004). The problem of
evaluating the availability and reliability of the parallel
system has been the subject of many studies throughout
the literature (Pan and Nonaka, 1995; Ebeling, 2000;
Kolowrocki, 1994; Kwiatuszewska-Sarnecka, 2001).

System reliability depends not only on the reliabilities
of components in the system but alse on their
mteractions, viz., the dependencies among them.
Generally, in a system, not only statistically-immdependent
failures but also statistically-dependent failures among
components can occur thus there are many studies
(Tack, 1986, Dorre, 1992; Lydersen, 1992; Rausand and
Hoyland, 1994) where the statistically-dependent among
components are taken mto account in system rehability
and availability analysis but in which the failure and repair

rates assumed constant. Whereas, from a practical
viewpomt, the constant failure rate assumption for
components has been and is repeatedly challenged by
knowledgeable reliability practitioners. Therefore, there
are other studies which handled the problem of time-
varying failure rates, among which all concerned
repairable system did not mvolve statistically-dependent
failures (Hassett et al., 1995; Amuri ef al., 2009). In most
cases, however, to combine statistically-dependent
failures and time-varying failure and repair rates in system
reliability and availability analysis is the most appropriate
for real system (Zhang and Horigome, 2001).

This study shows a CTMC for performing
availability, reliability and Mean Time to system Failure
(MTTFs) analysis of n-identical component multiple
repairable system with considering time varying
(constant) three types of failure rates and common-cause
failure rate. A parallel system of three component for an
example 1s given to show the performance of the model.

ASSUMPTIONS

¢ The system is composed of n identical and
independent components which are connected in
parallel

*  Hach component is failed with failure rate A, (t),1=1,
2,3

¢ The failed component is repaired with repair rate L,
t,I1=1,2,3

¢+ Common-cause failure rate for fully operating system
A (£) and p (t) repair rate of the system when it failed
due to a common-cause failure rate
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¢ The repaired component/system is as good as new
+ Attimet =0, all component are up and the system
failed when all components are down

THE BASIC MODEL

State probabilities: The state probabilities for the system
can be viewed as a result of solving a the set of first order
liner differential equations given by the following identity
(Hoyland and Rausand, 2004):

3 a, 1RG)

1 =1+l

dR (j) -
Y s b
a b

1)
+JZ a; P(i) + Z b, P

1=10 =]+l

where probability of state j at time t, o failure rate of a
component will be failed through transition from state j to
state 1, repair rate of a component will be good through
transition from state j to state L.b;

Let (m,, m, m,)be the state of the system, where m,,
m, and m, represent the number of failed components due
to failure of type 1, type IT and type TIT, respectively. Let
P (m,, m,, m,) be the probability of being in state (m,, m,,
m;) at time t and Pyc) be the probability of being in the
critical case at time t.

The state probabilities O<m,+m,+m;<) where P (m,,
m,, m;) can be viewed as result of solving the set of first
order liner differential equations associated with Eq. 1 is
as follows:

BOLD 030,04, (OR 00,0+ 1, ORAOD)
1, (DP,(0.1,0) + 1, (P, (0.0,1) + 1, (DB, (<),
(2a)

W = - m)> A )+ S mu (1]

P (m,m, m,)+ (I1—23:1n1 +D[é(m,)

1=1
A, (DB (m, — Lm,,m, ) + 8¢, A, (1)
Pt(ml 1ML, — Lma ) + 5(I1’13)7\.3 (t)
B (m,,m,,m, - D]+ (m, +1)d(m, + 1)
W, (OF, (m, +Lm,,m,)+ (m, +1) 8(m, +1)
M, (0P (my,m, + Lm, ) +(m, + 1 8(m, + 1)
u, (P, (m,,m,,m, +1),

(Zb)
and:

% =—u, ()P, (e) + A (1)P, (0,0,0) (2¢)

Where:
5 [l for 1<m =n
(im,) = Ofor m=0 for i=1273
1 for l=m+m+m,+1=n
§(m, +1)= m, +m, +1m, .
0  for m+m+m,+1+-n for i=123
To evaluate the system availability:
1 for 1=m +m,+m,+1<
B(mi+1)—{ o T T, T T 3)

0 for m+m,+m,+1>=n fori=123
To evaluate the system reliability:

lfor 1=m +m,+m,+1<n
for 1i=1 23
(4
At time t = 0 Eq. 2a-c with the following initial
conditions:

5(m1+1)_{

0 for m+4m+m,+1lzn

F,(0,0,0)=1,
B(m,m, m,)=0 for l<=m 4+m,+m,<n (3
andF,(c)=0

SYSTEM AVAILABILITY

By defimition, the general form solution of parallel
system availability at time t 13 given by:

n-1

A(t) = Z F,(m,,m,;,m,), (6)

m=0

m = I+ I, + I,

Here, according to the wvalue of n we use the
numerical method based on the Runge Kutta method to
find the solution time-varying (constant) failure and repair
rates in system availability A (t) of Eq. 6 with the initial
condition Eq. 5.

The steady state availability is one of the more
important factors in specifications and choice of hardware
The steady state availability of the system is the limit of
the instantaneous availability function as time approaches
infinity. Therefore:

A (o0} =limA(t) 7

However, in this case we have:

R (my,mg,m; ) 0, 0<m +m,+m, = n,—dpt(o) =0
dt dt
B,(m,,m,,m;) — P (m,,m,,m,) and F,(c) — P (c)
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The parallel system steady state availabilityA (o)
becomes:

n-1

Afw) = Z P(m,,m,,m,), (8)

m=10
m = m1+mz+m3

Where:

m! n
P(m, my,m;) = [————]
m,! m,!m,!” \m
[OARMAERT) /(=m0 ] PO, 0, 0)

P(c) = [E]P(o, 0, 0) ©)
Zn: P(m,, m, m,)+P(c) = 1,

m =10

m =10 + Im,+ I,

SYSTEM RELIABILITY

To obtain the reliability of the system, we consider
that the set of failed states are absorbing states.
Now let:

F.(m, m,,m,) — f’t(ml, m,,m,)

The general form selution of parallel system reliability
at time t 1s obtained as:

n-l

R (t) = 3 PB(m,m,m,), (10)

m=0

m = m, +m,+1m,

Here, according to the value of n we use the numerical
method based on the Runge Kutta method to find the
solution time-varying failure and repair rates in system
reliability R (t) of Eq. 10 with the mitial condition Eq. 5.

The method of Laplace was used transform for
Eq. 2a-c¢ according to Hq. 4 when failure and repair rates
assumed constant by combining the initial condition
Eq. 5, the numerical solution for R (t) can be obtained
through mnverse Laplace transform of state probabilities:

P (m,, m,,m,) = je'“f’t(ml, m,,m, )dt
o
Where:
sP, (m,, m,,m,)-P._, (m,, m,,m,) =
J&* @P,(m,, m,, m,)/dt) dt
0

Therefore:

Table 1: Event space of states for the systern of tailure
(my , my, my)

m = my Hmytr,

0 (0,0,0)

1 (1,0,0),(©,1,0),(0,0,1)

2 (2,0,0),00,2,00,(0,0,2),(1,1,0)
(1,0,1),(0, 1, 1)

3 (3,0,0),(0,3,0),(0,0,3),(2,1,0),
(1,2,0),(2,0,1),(1,0,2),(0,2,1),

0,1,2),0,1,1

n-1 -
R(t)=L'"R()= > L'(E(m,m,,m,)), an
m=0
m = m, +m,+m,
The MTTFs is defined as the mean time elapsed in

successful states before entering a failed absorbing
states:

MTTFs :jR(t) dt = hnulje'“ R(f) dt
1} 0

n-1
=lim %} P.(m,m,,m,) (12)
=0

s—0
st

n-1
= Z P _,(m,m,,m,),
m=0

m = m, +m,+m,

ANTLLUSTRATIVE EXAMPLE

In the Table 1 the above procedure is applied to
availability, reliability and mean time to failure for parallel
system with repair whenn = 3.

And state (¢) represent failed state for three
components due to common-cause failure.

SYSTEM AVATILABILITY

According to Eq. 2a-c the set of differential equations
associated with the system availability state are:

BOLD_ 133,049, OIR00.0)+14,(DRAL00)
I BO.L0) I ORO.01) 1, (ORC)

GRA0O) _ 1959, 0+ m (IR L0.0)+ 2 (D P2, 0.0)

dt =
1 (ORLLO) + (DR OD + 34, (DR(0,0,0)
@:—[zi% () + 1, OTO.L0) + (DR LLO) +

20, ()P, (0,2,0) + 1y (HP.(0,1,1) + 34, (1), (0,0,0)
% = ‘[223:7& (D+u,(DB0,0,D)+ w (DR, L0, +

My (OR(O,L1) + 2, (UB(0,0,2) + 3, (OB(0,0,0)
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@:—[i 3. (01 20, (OIR(2,0.0) + 3, (DB.(3,0.0) +

b (OR(2,1,0)+ iy (OP(2.0,1)+ 22, (0P, (1,0.0)

020 Y A+ 20 BIR0,20) ¢ (DRL2.0) +

3“»: (OR(0,3,0)+ 1, (DR(0,2, D+ 24, (OF(0,1,0)

oo [0+ 2, (DIR0,0.2) ¢ (OP.02) +

o (OR(0.L2)4+ 3, (OP.0,0,3) + 20, (UP,(0.0,])
w - —[Zj‘, A {0+ 1, (0 + 1y (OIP(L1,0)+ 24, (1)

(2,100 204, (0B(L,2,0) + i, (DB (LD +
22, (1P, (0,1,0)+ 24, ()P,(L0,0)

d 3

% IS A () (OTR(L 0D + 2, (6)
Pt(zaoa 1) + I'LZ (t)Pt (1:131) + 2“‘3 (t)Pt (130:2) +
20, (OPR(0,0,1) + 22, (1P, (L0,0)

*[Z A+ () + p (DR 0,11+ py(t)

P.(L11)+ 21, (P, (0,2, 1)+ 2, (DR, (0,1, 2) +
24, (D)P,(0,0,1)+ 24, (H)P,(0,1,0)
w = 3, (HP,(3,0,0) + &, (D)P.(2,0,0)

w — 3, (D R(0,3.0) + A, (1 P.(0,2,0)
dR (0,0,3) _

da
w = 200 + 1, (DIRE.L0) ¢ A, (1)

P(LLO)+ A, (t)R(2,0,0)

dP,(0,1,1)
dt

3, (0P, (0,0,3) + A,(6) B,(0,0,.2)

d
% = [0+ 2, (DIR L2004 A (1)
P.(0,2,0)+ A, () P.{LL0)
d
BCOD _ o 1)+ (0]P.(2,0,1) + 4, 1)

P,(1,0,1)+ A,() B(2,0,0)

b (0 + 20, (D]P,(1,0.2) + A, (1)

P.(0,0.2)+ A, ()P, (1,0,1)

21, (0 + p, (D]R0,2,D + 2, (1)

P, (0,11} + 2, (D'R(0,2,0)
W =, () + 2u,(DIR0,L,2) +
2, (DP,(0,0,2)+ 2, (1) B.(0,11)

3
% = -3 W (OP(LLY+ A, (OB,O.L1)+

i=1

7\‘Z(t)Pt (1: 0:1) + A“B (t)Pt (13170)

dt

dr.(1,0,2) _
dt

dp(0,2,1)
dt

dP.(c) _

m “H (D E(e)+ 2. (DF(0,0,0)

With the initial conditions P,(0, 0, 0) =1 and all other
initial probabilities are equal to zero. The availability

function which 1n this case 1s given by:

A(t) = R(0,0,0)+ R{1,0,0)+ P(0,1,0)+ R(0,0.1)
by: +P(2,0,0)+ P,(0,2,0) + P,{0,0,2) + P.(1,1,0) +
P,(1,0,1)+ P,(0,1,1)

The working time and the repair time of each
component are both Weibull distributed as a particular
case, let us assume that the working time and the repair
time of each component are both Weibull distributed. We

can then write:

(=11t
At =1.2t"
A (t)=1.31t"
A (ty=17t"

(=14
W, (=15t
B (1) =1.61t"
L ity=18¢"*

Using Maple program, the system availability
against time is shown in Fig. 1 with numerical solutions

based on Runge-Kutta method.

The working time and the repair time of each
component are both exponentially distributed as a
particular case, let us assume that the working time and
the repair time of each component are both exponentially

distributed. We can then write:

A(y=h =0007  w(t)=u =07
A=A, =0006 p(D=p =06
A (D)=, =0.005  p,(t)=p, =05
A=A =0008  u(=u =08
1.0
0.9
0.8 -
<
0.7
0.6 -
0.0 0.2 0.4 0.6 08 10

t

Fig. 1: The availability function A(t) versus the time t
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Fig. 2: The availability function A(t) versus the time t

Using Maple program, the system availability against
time 1s shown n Fig. 2 with numerical solutions based on
Runge-Kutta method.

STEAD STATE AVAILABILITY

By using the expressions of Hq. 8, 9, the parallel
system steady state availability A (=) is calculate:

2
A() = > P(m,m,m;)m = m, +m,+m,
m=10
Where:

P(L0.0) = M o, 0,0y, P(0,1,0) = 22

Hy K,

P(©,0,0), P(0,0,1) = 2 p(o, 0,0,

3

3z 3k
P(2,0,0) = 29 P(0,0,0),P(0,2,0) = 2 P(0,0,0),
Ky H;
anz
P(0,0,2) = 22 p(0, 0,0)
g
OA A GA A
PL1,0) = P pg o0y, P01y = P
My My My
P©,0,0), P0,1,1) = 2" po 0,0,
|

Al Al
P(3,0.0) = = P{0,0,0), P(0,3,0) = M—i P(0, 0, 0),
2

1

A..j
P(0,0,3) = == P(0,0,0),
M,

3}.-2}.. 3%2}1
P(2.1,0) = =2 P(0,0,0), P(2,0,1) = ==
Hikly Myl
2
P(0,0,0), P(1,2,0) = M P(0, 0, 0),
My
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n

Fig. 3: Steady state availability wvariation with u
(utilization factor)

2 2
P(1,0,2) = %P(O, 0,0), P02, 1) = thj
1M Mo
2
P(0,0,0), P(0,1,2) = % P(0, 0, 0),
M3
P(1, 1, 1):M P(0,0,0), P(c):£ P(0,0,0),
My s Me

3

> P(m, m,m) +P(c) =1

m=0

Which is u = /A, The steady state availability is
strongly effected by the ratio varis with A (o) which is
commonly termed utilization factor. Figure 3 Shows how
A (o) varies with utilization factor, when /A, = p/A; =
P/ A, =100,

SYSTEM RELIABILITY

In order to obtain the reliability function associated
with the model Eq. 2a-c and Eq. 4, therefore define states
(m,, m,, m,) for (m,+m,+m,) = 3 to be an absorbing states
and set all departure rates from these states equal to zero.
Then the reliability of the parallel system of three
components is defined by:

2

R(t) = > PB(m,m, m,),

m=0

m = m,+m,+m,

The working time and the repair time of each
component are both Weibull distributed as a particular
case, let us assume that the working time and the repair
time of each component are both Weibull distributed and
given the same data in availability.

Using Maple program, the system reliability against
time 13 shown m Fig. 4 with numerical solutions based on
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Fig. 4: The reliability function R(t) versus the time t
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Fig. 5: The reliability function R(t) versus the time t

Runge-Kutta method. The working time and the repair time
of each component are both expeonentially distributed
as a particular case, let us assume that the working
time and the repair time of each component are both
exponentially distributed and given the same data in
availability.

Using Maple program, the system reliability against
time is shown in Fig. 5 with numerical solutions based on
Laplace transform according to Eq. 11.

MTTF OF THE PARALLEL SYSTEM

The mean time to system failure can be obtained by
using Eq. 2a-2¢, 4 and 12 when n = 3 and the working time
and the repair time of each component are both
exponentially distributed:

3 ~ ~
“1=-[35 % +A,TP,_,(0,0,0) + p,B_,(1,0,0)
1=1

+u,P_;(0,1,0)+ n,P_,(0,0,1)

10007

8007

400+

200+

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010
o "

Fig. 60 MTTF of the parallel system against A,

3 —~ —~
0= —[22 Ao+ u P (L,0,0)+ 20 P _ (2,0,0)

1=1

P (LLOY + P (1,0,13+ 34 P_ (0,0,0)

3 —~— o~
0=-123"% + 1, 1P ,(0,1,0) + p,B_,(1,1,0)

i=1

+2u,P(0,2,00+ WP, ,(0,1,13+ 3%,P_,(0,0,0)

3 o~ o~
0= —[22:7\.l + 1, P _ (0,0, )+ uP_ (10,1}

i=1

+M215s:n(031:1) + 2“32:0(0:0:2)+ 37‘*3135:0(0:0:0)

3 o~ ~
0= 7[27\1 + 2 1P (2,0,0) + 20, F,_(1,0,0)
1=1

3
0=—[> % +2u,IP_,(0,2,0)+ 2%,P_,(0,1.0)

1=1

3 —~— o~
0= A +2u,]P,_,(0,0,2)+22,)P_, (0,0,1)

1=1

3
0= 7[2 A+ l-"z]lss:n(lalao) + 27‘*112:0

1=1

(0,1,0)+ 24,P,_,(1,0,0)

3
0=—[3 2+ + 1, TP, (L0, 1)+

i=1

24P (0,0,13+24,P_,(1,0,0)

3
0=—[2 A +u, + 1, 1P (0,11 +
1=1

20,P,_,(0,0,1)+ 2A,P_ (0,1,0)
Where:
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A, = 0.007, &, = 0.006, A, = 0.005,
m, =07, p, =06, and p, =05

Using Maple program, the MT TFs:
2 —~
=>" P_y(m,m,m,), m = m,+m,+m,
m=0

The MTTF of the parallel system against A, 1s shown
in Fig. 6 with numerical solutions for equations given
above.

CONCLUSION

The main objective for this study was to offer a
methodology for analyzing repairable parallel system
availability, rehability and MTTF with n identical
components and different failure rates, Markov models
and time varying failure and repair rates concepts have
been employed to develop the methodology for the
availability and reliability of such systems. The problem
of evaluating the availability and reliability depending on
size of the parallel system was formulated in set of first
order liner differential equations form, which seems
convenient for computation with software packages like
Maple. Numerical solutions based on Runge-Kutta and
Laplace transform methods was used in this model to
evaluate the state probabilities from set of first order liner
differential equations. Tractable solution were found for
the parallel system of 3-component and 21 -state.
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