Asian Journal of Tnformation Technology 11 (5): 181-185, 2012

ISSN: 1682-3915
© Medwell Journals, 2012

An Intelligent Cloud System Adopting File Pre-Fetching

MR. Sumalatha, C. Selvakumar, B. Jagadeesh,
V. Bhoopesh Kumar and R. Baluprasad
Department of Information Technology, MIT Campus,
Anna University, Chennai, Tamil Nadu, India

Abstract: Cloud basically deals with huge volumes of data and each cloud user stores and accesses gigabytes
of data. Cloud applications that require very fast data access are emerging quite frequently. Hence, 1t 15 of
utmost importance to provide a igh performance with reliability and efficiency. The Hadoop Distributed File
System is one of the most widely used distributed file systems. Such cloud systems must provide efficient
caching mechanisms in order to improve the speed of accessing the data. However, due to inefficient access
mechanisms of the Hadoop, the access latency is too high that it reduces the throughput of the system. An
efficient pre-fetching technique in Hadoop improves the overall performance of the cloud system.

Key words: Cloud, Hadoop Distributed File System, file pre-fetching, caching, efficiency

INTRODUCTION

Cloud computing is now being utilized in every field
of computer science. Data intensive applications and
computation mtensive applications are dependent on
cloud. Cloud has growmg needs i the field of Web
Services and Web Hosting. Recently, Internet service file
systems are extensively developed for data management
in large scale Internet services and cloud computing
platforms (Tantisiriroj] et al, 2008). Individual
organizations also have cloud systems to insure that their
works are done at the highest possible speeds. Many of
the applications that execute on the cloud require more
mumber of files for their computation and processing.
These systems incur a major overhead of having to
process all those file requests (Soundararajan ef af., 2008).
The latency involved in accessing and transferring the
files exceed the computation time to a considerable level.

Hadoop 15 a framework that supports data mtensive
distributed applications under a free license and hence, it
has become one of the popular distributed file systems.
For instance, Yahoo manages its 25 petabytes of data with
the help of the Hadoop System at its lower level
(Shvachko ef ai., 2010). Due to the access mechanisms of
HDFS, the access latency 1s extremely serious and 15 the
worst when a large number of small files are to be
accessed.

Pre-fetching with the help of relationship among
files 1s comsidered an efficient method to alleviate
access latency (Shriver ef al., 1999). This provides the
mechanisms for caching the required files before hand
that is even before it is requested. Currently, the
HDFS does not provide any such mechanisms. This

methodology exploits the fact that the users or processes
often follow an access pattern using which a correlation
between the files is established. This relationship can be
used in the later stages for file pre-fetching.

In this study, an algorithm is proposed that can
effectively establish the relationship among the files and
using the relationship structure, pre-fetch the files as
when they are needed. The algorithm also ensures
dynamic adaptability of the pre-fetching activity and the
pre-fetch speed, based on the speed with which the files
are accessed, thereby ensuring that the pre-fetching does
not exceed the limit needed and that the cache space 1s
also used effectively.

LITERATURE REVIEW

The Hadoop is the most widely and easily available
distributed file system. An improvement in its efficiency
will be one of the most recogmzed ones. Currently,
proposals have been made for implementing the
pre-fetching techniques in the Hadoop (Dong et dal.,
2010). But no algorithms have been proposed so far to
implement the pre-fetching in cloud.

The main goal of the cloud service providers is to
increase the performance of the cloud for the user and at
the same time increase the profits for their organization.
This is achieved by a strategy called the optimal service
pricing of the cloud (Kantere et al.,, 2011). The pricing
solution employs a novel method that estimates the
correlations of the cache services in a tume-efficient
manner. So, caching plays an important role in providing
the quality of service to the client and increasing the
profitability for the cloud service provider. On adopting

Corresponding Author: M.E. Sumalatha, Department of Information Technology, MIT Campus, Anna University, Chennai,

Tamil Nadu, India

Asian J. Inform. Technol., 11 (5): 181-185, 2012

the pre-fetching strategy, it is equally important to
concentrate on the other parameters of the cloud system
like performance, load balancing, fault tolerance, etc.
(Wuetal, 2010).

PROPOSED WORK

The main aim of the research is to reduce the latency
invelved in the file access by introducing the concept of
file pre-fetching. This is achieved by using a correlation
detection module that can be used to establish the
relationship between the files and a pre-fetching module
that exploits the correlation module to pre-fetch the files.
The basic structure of the Hadoop System (HDFS) which
is depicted in Fig. 1 involves:

+ Name node which serves as the master for the Cloud
System to which all the requests from the client are
directed. It has the meta-data about the files

1

Clients
* Catching module
« Searching cache

L

Name node

« Correlation detection
« Trigger pre-fetching activity
+ Metadata caching

* Cache the data blocks
« Maintain the relation
structure

| Data node 1 | | Data node 2 I

[|

Fig. 1: Hadoop with the related modules

+ Data nodes which are the data centers

¢ User nodes/client which issue the requests
The proposed pre-fetching strategy takes into

considerations the network load, the load on the system

and the throughput of the system (Tia et al., 2010) while

pre-fetching 1s triggered. The caching of files also

happens Another

important parameter to be taken into consideration is the

depending on these parameters.

pre-fetch speed also called the pre-fetch degree. The
degree to which the pre-fetch activity has been triggered
for a file should be within the limits of the speed of access
of files by the process that 18 currently using those files.
The algorithm adjusts the pre-fetch speed based on the
file access speed by the process.

IMPLEMENTATION OF SYSTEM

In this study, the algorithm to adopt the file pre-
fetching strategy in the Hadoop System 1s discussed. The
two most important modules that are used include the file
correlation detection module and the file pre-fetching
modules, along with the processes involved in it
(Dong et al., 2010). The interaction among the different
modules is given in Fig. 2. The name node, being the
master node of the Hadoop, accepts the request for file
access from the clients. It takes up the responsibility of
detecting the correlation between the files. Tt maintains a

Fig. 2: Interaction among the components of Hadoop

182

Client

Search within Request for file
the cache access . Ao
1
i
1
i
Name node 1
1
Initiate the [_| Initiate file readl— Fetch metadata Search metadata |,__| Receive 1
pre-fetch of file in cache request H
1
1
i
Find related files —| Pre-fetch [| Cache the | Send related 1
Metadata Matadata file list 1
T !
U N A !
!
!
Send file L. i !
requested “— Cache the files [=Initiate file read Recz;’:ﬁ::med i
1
1 !
i Receive read :
1 Data node requests .
! 1
i !
! 1
f 1
1

Asian J. Inform. Technol., 11 (5): 181-185, 2012

tree for every directory that the user holds which actually
represents the relationship existing between the files of
that directory.

The client needs an efficient caching mechanism to
cache both the metadata of the file as well as the file itself.
The data nodes are also provided with the caching
mechamnisms to cache the data files that are being fetched
and pre-fetched. Also, it has to maintain the relevant data
structures to ensure the file correlation is maintained. The
steps in the algorithm are briefed as follows:

The client before requesting the name node for the
file, checks its cache if it has the metadata about the
file it needs. If it has then it can directly fetch the file
from the appropriate data node. Otherwise, the
request 1s sent to the name node

The name node will call the file relation module when
the file 1s used for the first time by any process/user
The name node upon receiving the request will
start fetching the file from the data node, based
on the metadata of that file (Shvachko et al,
2010)

Simultaneously a pre-fetch activity is triggered for
that file to retrieve the list of related files which make
use of the file relationships (If the file has no
relationships established during that access then no
pre-fetch activity will be triggered)

The pre-fetching module fetches the metadata of files
to be pre-fetched. They are then returned and stored
in the client if the load 1s low; otherwise stored
internally

The data nodes as per the instructions of the name
node will fetch the files and cache them i its memory
or in the client based on the load on the network

The name node also adjusts the pre-fetch speed
based on the file access speed of the process
currently using the files

A description of the core modules that were
umnplemented 1s as follows:

File correlation detection module: The file relationship
structure 18 the most umportant component in triggering
pre-fetch, storing the sequence of file accesses made by
a process. For the purpose of easy understanding, the
relationship structure is established in every directory
accessed, relating the files of that directory alone and is
stored in a separate file within the same directory. A tree
is maintained to establish the relation between the files.
Access count 1s one mmportant parameter that influences
the extent of the file relationship. The more the access

183

count a file, the more is the probability of accessing the
file next m the sequence. Each node in the tree will have
the following fields:

Name of the file
Frequency of access
Tts successor file

A hash table is also maintained that contains the
information about the files that are newly opened. This
hash table ensures that the tree is not over congested by
adding more and more nodes which will make the traversal
inthe tree extremely difficult. Hence, the new file accesses
are first hashed in the table and after the number of
accesses reaches a threshold, the entries are transferred
to the tree. This 1s an optional structure, sumplifying the
tree. Construct the tree for the directory as follows:

Build Relationship (T
Input : Process Accessing the files
Output : Relationship Structure

1. for each new incoming request for file f

2. if' fis first accessed from the directory

3 add f as root;

4. increment access count;

5. else if fpresent in tree as root

6 increment access count of f;

7. else if predecessor (p) of fis present

8 if f not present

@ add f as successor of p;
increment the access count;

10. else

11. increment access count;

12. else

13. search hash list;

14, if ffound

15. increment file access count;

106. add f'to tree if threshold access count
is reached;

17. else

18. insert f into hash list

Pre-fetch activity: After the files are related using the tree
as discussed, the next step 18 to exploit this relationship
in pre-fetching the files. The file that is currently accessed
is first located in the tree of its directory. The path along
the decreasing order of the access frequency is then
followed to find the files for pre-fetch. This path
represents the files having the highest probability of
being accessed in the sequence.

The files are pre-fetched from the data nodes by
sending the list of related files obtained above. The name
node takes care of retrieving the metadata of all the related
files and caching them either in the name node itself or in
the client depending on the network load. This metadata
serves the important purpose of locating the data node
where the actual file is present. The pre-fetched files and
metadata are stored in a software cache. Due to the

Asian J. Inform. Technol., 11 (5): 181-185, 2012

limitations of the space of the cache, a reference strategy
1s ntroduced. In cases where the file size 1s small (say 1 kb
as used in implementation), it is fetched from the data
node and its contents are cached. In cases of large files,
only the metadata, representing the location of the file is
cached. The client can then use this information to fetch
the required file directly from the data node, without a
request being 1ssued through the name node thus
reducing the overhead involved in requesting through the
name node. This ensures that there 1s an effective use of
the cache.

The name node also monitors the speed with which
the files are being accessed. After a set of few pre-fetches
if the file access speed is detected to be slow then
depending on the interval between two file accesses the
next pre-fetching interval 1s adjusted. If the limit
exceeds a certain value (1 min as assumed in the
unplementation) then the process is assumed to be in
sleep or is dead. In that case, the pre-fetching activity
serves no purpose and 1s completely stopped:

Prefetch_Module
Tnput: Relationship File
Output: Loaded Cache

—

. find the directory of the file being accessed (f)
T.oad the relation file of £
if metadata of f present in cache
directly access the datanode
else send request to the same node to fetch file
search for related files
check load on network and Namenode
if network load is low
prefetch metadata of related files
cache metadata in the client
cache the file in the client
send list of related files to datanode
else if network load on nameneode is high
prefetch metadata of related files
cache metadata in namenode.
it process active
continue caching
change prefetch speed
else if process is slow
stop prefetch

W

NS

EXPERIMENTAL EVALUATION

The pervious algorithm is implemented in a cluster of
4 PCs. All the PCs are mstalled with CentOs 5.8.19. One of
the four PCs is configured as the name node. Tt has i3 Tntel
CPU 2.10 GHz, 4 GB memory and 500 GB disk. The other
three nodes act as the data nodes. Each of them has
Pentium Dual-Core CPU 2.10 GHz, 3 GB memory and
320 GB disk. Hadoop needs Java for working. Tava
Version 1.7.0 13 installed and over which Hadoop
0.20.203.0 is installed Files, amounting to 1 GB in size are
uploaded to the Hadoop Filesystem, a majority of them
being small files.

184

0.84

Time (sec)

0.6

0.44

T T T
100 150
No. of file

50

Fig. 3: Time taken (sec) for establishing relation structure

The algorithm 1s designed keeping in mind that there
is some definite access pattern for the files. This is
actually true in most cases of the software processes that
are used to run some applications. This 1s explored i the
algorithm for establishing the relationship among the files
and pre-fetching. A process is taken as the input for
the algorithm. The process is simulated to use varying
number of files so as to analyze the algorithm effectively.
In order to analyze pre-fetching, first the correlation 1s
established among the files being accessed by the
process and the same is stored as a file in the directory.
The process may use files from different directories. The
module 1s designed to form the appropriate structures for
the files from every directory and store the relation in their
respective directory. The time taken to establish the same
1s noted for different number of files as in Fig. 3. The
process which access a set of 150 files are first made to
run and the file-correlation is established for different
number of clients.

After the establishment of the relation structures, the
same set of 150 files 13 downloaded in the presence and
absence of the pre-fetching techmques and the download
times are found to follow the graph i the Fig. 4. The
pre-fetching module makes use of the file that represents
the relationship among the files in every directory
accessed by the process. The name node will fetch the list
of related files for the given file and will retrieve the
metadata for the same, caching them either in its
cache or in the client based on the network conditions.
Simultaneously, it also tries to pre-fetch the data from the
data nodes by sending the list of related files to it. The
client, on accessing the files will try to find the file in the
cache. If either the metadata of the file or the file content

Asian J. Tnform.

10000+
9000+
8000+
7000+
6000+
5000+
4000
3000+
2000+
1000

0 T T T T
30 40

No. of file

B With pre-fetch
B Without pre-fetch

Time (sec)

50

Fig. 4: Download time (msec) vs. No. of file requests

1s present in the cache then there arises no need for the
client to send the request to the name node. The file
content is used as such whereas the metadata of the file
15 used to fetch the file from the data node directly
without the intervention of the name node. This greatly
reduces the access latency involved in file accesses.

It obvious from the graph that with the
mtroduction of pre-fetching, the time taken to download
the same set of files has been reduced considerably.
The difference found to be nearly about 1 sec at the
minimum. Since, large scale applications will involve a lot
of such file requests, there will be very good mcrease in
the performance. So, the time taken for the establishment
of relationships can be ignored. Tt can be noted that
as the number of clients increase, the download time 1s
also found to increase. This 1s due to the fact that there 1s
just a single namenode for all the clients which has to
perform all processing related to the file pre-fetching,
mecurring an overhead and thus a lowered response. But
still, the end result is found to reduce overall latency
mvolved in file accesses, proving the efficiency of the
technique. Therefore, the proposed algorithm is found to
increase the performance of the Hadoop Distributed
File System by reducing the latency involved m file
retrieval.

i

CONCLUSION

Hadoop, though 1s widely used 1s suffering from the
access latency involved in reading large number of
files. In this study, the pre-fetching mechanism and the
algorithms that are discussed are found to be very
effective in alleviating the access latency while at the
same time, monitoring the cloud parameters to ensure that
the pre-fetching activity does not affect the cloud
performance.

185

Technol.,, 11 (5): 181-185, 2012

RECOMMENDATIONS

As a future research, more sophisticated policies
are to be experimented, taking into considerations the
presence of replica for further improving the efficiency of
the HDFS pre-fetching.

REFERENCES

Dong, B., X. Zhong, Q. Zheng, L. Tian, J. Liy, I. Qiu
and Y. Li, 2010. Correlation based file prefetching
approach for hadoop. Proceedings of the 2nd TEEE
International Conference on Cloud Computing
Technology and Science, November 30-December 3,
2010, Indianapolis, IN., pp: 41-48.

Tia, B., T'W. Wlodarczyk and C. Rong, 2010. Performance
considerations of data acquisition in hadoop
system. Proceedings of the 2nd IEEE Intemational
Conference on Cloud Computing Technology and
Science, November 30-December 3, 2010,
Indianapolis, IN., pp: 545-549.

Kantere, V., D. Dash, G. Francois, S. Kyriakopoulou and
A Ajlamaki, 2011. Optimal service pricing for a
cloud cache. TEEE Trans. Knowledge Data Eng.,
23: 1345-1338.

Shriver, E., C. Small and K.A. Smith, 1999. Why does file
system prefetching work? Proceedings of the
USENIX Annual Techmcal Conference, Monterey,
California, USA., Tune 6-11, 1999, USENIX
Association Press, Monterey, CA., USA., pp: 71-84.

Shvachko, K., H. Kuang, S. Radia and R. Chansler, 2010.
The hadoop distributed file system. Proceedings of
the 2010 TEEE 26th Symposium on Mass Storage
Systems and Technologies, May 3-7, 2010,
Washington, DC., USA., pp: 1-10.

Soundararajan, G., M. Mihailescu and C. Amza, 2008.
Context-aware prefetcluing at the storage server.
Proceedings of the USENTX 2008 Annual Technical
Conference, June 2008, Berkeley, CA., USA.,
pp: 377-390.

Tantiswiro;, W., S. Patil and G. Gibson, 2008.
Dataintensive file systems for internet services:
A rose by any other name. Techmical Report,
CMU-PDL-08-114, Carnegie Mellon University.

Wu, I, L. Ping, X. Ge, Y. Wang and J. Fu, 2010. Cloud
storage as the infrastructure of cloud computing.
Proceedings of the International Conference on
Intelligent Computing and Cognitive Informatics,
Tune 22-23, 2010, Geneva, Switzerland, pp: 380-383.

	181-185_Page_1
	181-185_Page_2
	181-185_Page_3
	181-185_Page_4
	181-185_Page_5

