Asian Journal of Information Technology 11 (6-12): 194-200, 2012

ISSN: 1682-3915
© Medwell Journals, 2012

An Integrated Development Environment for Blocks Creation

Marlinawati Djasmir, Sufian Idris, Marini Abu Bakar and Abdullah Mohd Zin
Center for Software Technology and Management,
Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia

Abstract: Block Based Software Development is a software development approach that supports end-user
software development. In this approach, end-users can develop applications by selecting, customizing and
combining software blocks. Tn the current implementation, a block is developed by using the JTava programming
language and is packaged as a JAR file which may consists of the following files: the class files, text and html
files, images, audio and video clips, configuration data and any other files required for the block to operate. In
order to help block developers to develop software blocks, a special purpose Integrated Development
Environment (IDE) need to be provided This special purpose IDE can help to improve the quality of blocks,
reduce cost and time and hence mncrease the productivity of programmers. In this study, researchers describe
the design and development of this special purpose TDE. The study is done in three phases. During the first
phase, requirement analysis process was carried out by analysing existing IDEs, especially those related to
components development. Based on this requirement, the TDE is designed and implement. The last phase
mcludes an evaluation process to determine the effectiveness of the software tool.

Key words: Integrated development enviromment, block based software development, end user programming,

software components, Malaysia

INTRODUCTION

Block Based Software Development (BBSD) 1s a
software development environment that supports end-
user software development. The concept of BBSD 1s a
combination between end-user programming and
component-based software engmeering (Zin, 2011).

End-user programming is a term that refers to
computer programming carried out by end users (for
example teachers, accountants, scientists, engineers
and parents) who are not trained as programmers
(Goodell, 1998). Since, most of end-user programmers do
not have programming skills, it 1s very difficult for them to
write programs by using conventional programming
languages. In order to support end-user programming, a
number of software tools have been developed. These
software tools enables end-users to create applications
from scratch or to modify a certain part of existing
applications. Software tools to support end-user
development must fulfill a number of criteria. The most
unportant one 1s that the tools must be flexible and
adaptable to various user environments. These tools must
also easy to understand, to leam, to use and to teach
(Lieberman et al., 2006).

Component-Based Software Engineering (CBSE) has
become an increasingly popular approach to facilitate the

development of evolving systems since it enables
software to be developed by using reusable components
(Bennett, 1995). The objective of CBSE 1s to take elements
from a collection of reusable software components and
build applications by simply plugging them together.
Hence, the main aim of this technology is to produce
high-quality software systems with shorter and more
cost-effective development cycles. By reconfiguring
components, adapting existing components or
introducing new components it 1s hoped that applications
could be adapted to changing requirements of real-world
software systems more easily and address the
problems of object-oriented development approaches
(Cheung, 2004).

In BBSD, end-users develop applications by
selecting, customizing and combining software blocks. In
BBSD, 1t 1s assumed that many blocks are available for a
given problem domain. The task of creating these blocks
15 done by professional programmers (also known as
block developers). The block developers need to have a
very strong techmical expertise m order to be able to
produce a very high quality and reliable blocks.

In order to support Block-Based Software
Development, a number of software tools need to be
provided. One of the most important tools 1s the one for
creating blocks. The availability of such a tool will provide

Corresponding Author: Marlinawati Djasmir, Center for Software Technology and Management,
Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia

Asian J. Inform. Technol., 11 (6-12): 194-200, 2012

a convenient way for block developers to develop blocks.
This study describes a work that has been carried out in
order to develop a specialized integrated development
environment for blocks creation.

Literature review
Software components: A software component 13 generally
defined as a piece of executable software with a published
interface which must be delivered in a ready to use form
Hopkins (2000). In CBSD, these software components can
be integrated to form a functioning system. It is always
assumed that components must be correct and reliable
and that they must be represented by accurate and
complete specification

A mumber of component models have been proposed,
such as CORBA (OMG, 1996), Microsoft COM
(Rogerson, 1997), JavaBeans (Sun Microsystems, 1997)
and Enterprise JaveBeans (Monson-Haefel, 2000).
CORBA 13 the acronym for Common Object Request
Broker Architecture. Tt is an open, vendor-independent
architecture and infrastructure that enables computer
applications to work together over networks. Microsoft
COM (Component Object Model) technology enables
software components to communicate within the
Microsoft OS5 environment. COM is used by developers
to create re-usable software components, link components
together to build applications and take advantage of
Windows services. Object-oriented languages such as
C++, provide programming mechamsms that simplify the
mnplementation of COM objects. The family of COM
technologies includes COM+, Distributed COM (DCOM)
and ActiveX® Controls. JavaBeans are reusable software
components in the form of classes written m the Java
programming language that conform to a particular
convention. They are used to encapsulate many objects
into a single object so that they can be passed around as
a single bean object instead of as multiple individual
objects.

Blocks: Within the context of Block Based Software
Development, a block 18 a Smgle-Layer Software
compoenent that can be used to perform a specific task.
Single-layer implies that a block cannot have sub-blocks
and it cannot be a sub-block of another block.

A block consists of four elements: attributes,
behaviour, GUI elements and interfacing (pin in and pin
out). Tt is possible for a block to have more than one GUIL

In order to support block-based development in a
particular domain, sufficient number of blocks for the
domain needs to be provided. This task 1s carried out in
four stages as follows:

195

Tdentify the programming blocks required for the
domain

Design the blocks

Implement the blocks

Test the blocks

The process of block identification and design has
been described m Afiza and Rokiah.

A block can be implemented by using various
programming languages. However, currently most of the
blocks that have been developed are implemented by
using the Java programming language. The block 1s
packaged as a JAR file which may consists of the
following files: the class files, text and html files, images,
audio and video clips, configuration data and any other
files required for the block to operate.

Figure 1 shows an example of a block for learning
letters. This type of block is useful for developing
courseware for early childhood education. The block’s
package consists of:

A class file for displaying text
A class file for playing audio
Anaudio file

An attribute file

This block consists of seven attributes:

Name

Text

Text colour

Text size

Text font
Background colour
Audio file name

This block has three behaviours:

Text

| Previous | | Audio | | Next |

Fig. 1. A block for learning combination of capital and
small letters

Asian J. Inform. Technol., 11 (6-12): 194-200, 2012

s+ Setaudio on and off
+ Move to the next block
¢+ Move to the previous block

The attribute file 13 a simple text file in the followmg
format:

+ Name: LearnLetter

¢ Text Aa

s+ TextColor: Black

¢+ TextFont: Aral

+ BackgroundColour: Brown
s+ Next: Nil

+ Previous: Nil

A user can customized the block by changing values
of the attributes to create an mstance of a block. For
example, Fig. 2 shows an instance of the block showed in
Fig. 1. In this case, the text has been replaced by Aa. The
user can give a name of this particular mnstance of the
block.

Another example of a block is shown in Fig. 3. This
block can be used for learning to link alphabets with
words. The block’s package consists of:

* A class file for displaying text and image
* A class file for playing audio

¢ Anaudio file

* Animage file

« Anattribute file

This block consists of fourteen attributes:
¢ Name

¢ Textl
¢ Textl colour

EEX

B Design Preview [A_gabung]

Sound Next

Fig. 2: An mstance of a block for learming combination of

capital and small letters

s Textl size

e Textl font

o Text2

s Text2 colour

o Text2 size

s Text2 font

s Background colour
+ Audio file name
s Tmage file name
s Tmage file width
» Image file height

Similar to the previous bloclk, this block alse has three
behaviours. An instance of the block in Fig. 3 is shown in
Fig. 4. In this case, the two text boxes are replaced with
Chicken, C and the image is replaced with an image of a
chicken.

Implementation of block: The pseudo-code for the class
file for displaying text for the block for learning letters 1s
shown below.

!

Text o || Image

|Previous|| Audio || Next

Fig. 3: A block for learning alphabets and words

| Lansming Mauei {77

Chicken

C for

Previous | Sound Next

Fig. 4. An instance of a block for learmng alphabets and
words

Asian J. Inform. Technol., 11 (6-12): 194-200, 2012

package LeamLetters;
// import relevant Java libraries

public class Letters extends
javax.swing.JPanel{

/fvariable declarations

public Letters() {
Tnitialize Components
ReadAttribute File
Set Attribute Described in the File

}

private void initComponents() {
jLabelFont = new javax.swing. JLabel();
prevButton = new java. awt.Button();
nextButton = new java.awt. Button();

Set Background Colour
Set Border
Set Text Colour
Set Text Font
Set Horizontal Alligrment
Set Text(A);

}

Private ReadAttributeFile) {
/ read file line by line
}
)

MATERIALS AND METHODS

Requirement specification: An Integrated Development
Environment (IDE) is a software tool that can help
programmers to develop applications. The main objective
of IDEs 1s to make programmers more productive. This 1s
achieved by providing tools which are ntuitive to use and
cover more of the software engineering cycle.

The requirement of an IDE for block creation 1s shown
as a use case diagram in Fig. 5. From the use case diagram,
it 18 clear that the IDE should provide support for

following functions:

Save b] k

/ asalJA

Fig. 5. Use case for using the integrated development
env ironmert

197

Create new block container: The first step in creating a
new block 1s to create a new block contamer that enables
a block developer to drag components into it.

Save block: A block can be saved temporanly as a java
file. Once the block is completely developed, it must be
saved as a JAR file for distribution purposes.

Customize the block: A block developers can customizes
a block.

Compile the block: A block should be compiled to ensure
that sure that it does not contain any errors.

Analysis of available tools: Since, a block is based on
Tava, block creation can basically be done by using any
Java IDEs such as Netbear, JCreator and Blue] IDE.

Eclipse (www.eclipse.org) platform is designed to
serve as a common base for diverse IDE-based products,
providing open APIs to facilitate thus integration. Eclipse
IDE is a professional IDE and contains advanced features
and it is cwrrently used widely. Tt is an open source
software technology where users can download the
software for free together with the source code. Eclipse is
a platform-centric TDE with various development tools can
be mtegrated within it (Chen and Marx, 2005). It 15 a
universal TDE for anything and for nothing in particular
(Chen and Marx, 2005). Eclipse provides code wizards to
make it more productive. Eclipse does not only support
extensions by allowing plug-in but user can modify the
core code to solve problems encountered when extending
the platform. Eclipse IDE 18 not Java specific where the
menus and procedures are too generic and user need a
documentation and tutorials about this IDE.

Bluel (www.bluejorg) is an Integrated Java
environment specifically designed for an introductory
programming course in Java. This TDE is suitable for
begimmers and someone who have no experience in
programming. Tt is better suited to introductory teaching
than other environments for variety of reason: the user
interface 15 simple and the environment provides
important teaching tools that are not available in other
environments. One of the most important strengths of the
Bluel environment 1s the user’s ability to directly create
objects of any class and then to interact with their
methods.

NetBeans (www.netbeans.org) 1s a platform to create
professional desktop, enterprise, web and mobile
applications by using the Java programming language.
This IDE 18 designed with reusability and extensibility in
mind and thus it allows users to add new features easily
or even to build their own applications by reusing
NetBeans core classes as a framework. NetBeans IDE
provides an amazing development and it a free and its

Asian J. Inform. Technol., 11 (6-12): 194-200, 2012

JPanel
Utama
4
btn: MyJButton
1bl: MyJLabel
1
rb: MyJRadioButton
MylJPanel
tf: MyJTextField
ta: MyJTextArea
Cb: MuJCheckBox
Cc: JColorChooser
Save()
OpenFile()
CompileFile()
RunFile()
*
JLabel MylJLabel —
*
JButton < MylJButton
*
JTextField MylJTextField
*
JTextArea Myl TextArea
*
JRadioButton MyJRadioButton
*
JCheckBox < MylJCheckBox
PlayAudio
Sound 1: AudiolnputStream |
currentSound: Clip

setFilePath()

Fig. 6: Class diagram

code is freely reusable whether for developing commercial
or non-commercial software. NetBeans technology 1s
standards-based and it is also an open source software.

Although, these three TDEs provides a lot of facilities
to support block creation, analysis of these tools
indicates that they do not support all of the required
functionalities. Thus, there is a need for us to develop a
special purpose IDE for block creation.

Software design: There are nine classes needed to
develop the proposed IDE. These classes are Main class,
PlayAudio, MyJButton, MylLabel, MyJRadioButton,
MyJTextField, MyJTextArea, MyJComboBox and
MylJPanel. The class diagram for the IDE 1s shown in
Fig. 6.

198

| : Contoller

<<programmer>

ol
(new block required)
|

alt néw block required

A 4

(clse)
[

|
(not done)

open existing block

loop J

alt _J (edit block sourcetcolde I1;equired)
1 1K

(cu

tomize block required)

customize block

(cor:lplle block requcl‘l)‘%cll ile block

Fig. 7: Sequence diagram for creating a new or opening
an existing block container

[Sd customize blcok GUJ

loop] [not done]
| ait] [Button change required]

ref

: controller

Button operation |

[Label change required]

ref Label operation |

[Text Field change required]
ref

E

Text field operation |

[Text Area change required]
ref

Text area operation |

[Radio button change required]
ref

Radio button operation |

[ComboBox change required]

ref Combo Box Operation |
[Audio change required]
ref

Audio operation |

Fig. 8: Sequence diagram for block customization

The interaction between these classes can be shown
by using three main sequence diagrams: a sequence
diagram for create or open existing block container, a
sequence diagram to describe block customization and a
sequence diagram to describe customization of block
GUTs. The first sequence diagram is shown in Fig. 7. As
shown in Fig. 7, activities mvolved in creating a new block
container mclude edit block source code, customize block,
compile block and save block.

The second sequence diagram is shown m Fig. 8.
There are three types of customization: customization of
the block GUIL, customization of the block behavior and
customization of the block interfacing.

Asian J. Inform. Technol., 11 (6-12): 194-200, 2012

—> File | Edit ICompilelRunl Helpl
Block Palette Design | Source Properties
4 A Name
Label T T o
Color |
Desi ¢
Swing . &s%gn Te_,xt Font [0
controls interface] editor
| Textfietd | size (O
| Check box
A
| Audio |
| Previous | Main
| Next | panel Swing
properties

Fig. 9: User mterface for the IDE for block creation

User interface design: Figure 9 shows the user interface
of the IDE for block creation. As shown in figure, the user
mterface consists of six sections: the menu section, swing
controls section, design section, text editor section, main
panel section and swing properties section.

There are five pull-down menus provided to support
the functionalities of the IDE. Menu files consist of a five
sub-menus, menu edit consists of three sub-menus. The
other two menus are compile and run. The swing controls
section consists of nine elements: label, button, text field,
text area, check box, radio button, audio, previous and
next. The working area consists of two views: design view
and code view. For the design view, a block developer can
drag and drop swing components into the design area in
order to create the block user interface. The block
developer can also edit properties of a component. The
last section, swing properties consists of attribute of the
mstance that 15 generated from each component. The
developers can specify attributes of the instance for the
block. These properties can be modified by the end user.

Implementation OF IDE: The implementation of the IDE
was carried out by using Java programming language. The
overall immplementation 1s done by using Netbeans 6.8 and
Java JDK. JDK stands for Java Development Kit and it 1s
a free software development package from oracle to
umnplement the basic set of tools we need to write, test and
debugging Java applications.

RESULTS AND DISCUSSION

The evaluation of the IDE is done by using case
study approach. Five programmers have been asked to
use the IDE to create blocks by gomg through the
process step by step as shown in Fig. 10-14.

199

File __Edit ICompileI Run | Help I

Op
Save \

Source Properties

Name
Color
Font

Save as JAR file
[Exit

[rextfield

aooiano

Size

| Text area

Check box

Radio button

Previous

r
|
|
|
| |
| |
[Audio |
| |
| |

Next

Fig. 10: Create a new block

File | Edit [Compile] Run [Help |
Block Plette Design |

Source Properties

|

Name
Color
Font

Label

Button

O
m]
Text field Size O

Text area

Check box

Radio button

Audio

Previous

Next

Fig. 11: Resize the block

Block Palette Design | Source Properties
Name

[

Label

Color

|

Button Font

\

Size

]
]
[m]
O

Text field

Text area

Check box

| Radio button

Audio

p 4

Previous

Next

Fig. 12: Create the instance of element

As shown in Fig. 10, the first thing that needs to be
done in order to create a block is to select new block in
the menu file. A block container will then be displayed in
the design area. The block developer can then modify the
size of the block contamer as shown m Fig. 11.

Asian J. Inform. Technol., 11 (6-12): 194-200, 2012

File | Edit |Compile| Run | Help _

Block Plette Design | Source Properties
Name
Label o
Color |0
| Button | Font O
Text field Size [m]

Aa

Text area

Check box

Radio button

Audio

Previous

Next

Fig. 13: Block has been produced

| Label | impor R O
ubli Color (O

| Button | Font [m]

[Textfied | size |0

| Text area | { f‘\“'l:f'm

| Check box |

ame frame = new JFrame ();
{Layout(new BorderLayout()),
).

Radio button

g
g

L pi atton("prev"")
bin_prev.setSize(100, 50);
btn_prevsetLocation(141. 107);
frame. add(btn_prev);

Audio

Previous

Next

Fig. 14: Code editor environment

To insert an instance of a component into the block
container, a block developer can click on the selected
component on the left side and the instance of this
component will appear in the design area. Attributes for
the instance will then be displayed. The values of these
attributes value can be changed if necessary.

Figure 13 shows the block that has been completed.
This block consists of the labels Aa, button Previous
and Next and button Play to play the audio. This block
must then be compiled by clicking the compile button on
the menu file to generate a class file. It can then be
executed by clicking the run button. The block will be
saved as class file and the properties will be saved as
txt file. The block can then be packaged as a jar file by

selecting Save as JAR file. The code view allows a
developer to view the Java code of the block as shown in
Fig. 14.

CONCLUSION

In the study, researchers have described the design
and implementation of an IDE for the block creation. The
purpose of this IDE is to support the block based
software development approach. Although, blocks can be
created by using currently available Java IDE such as
Netbean, the availability of specialized TDE for block
creation enables blocks to be created faster and with
better quality.

REFERENCES

Bennett, D.W., 1995. The promise of reuse. Object Magaz.,
4: 5-68.

Chen, 7. and D. Marx, 2005. Experiences with eclipse IDE
in programming courses. . Comput. Sci. Colleges,
21:104-112.

Cheung, H.W., 2004. The impact of component-based
technology on the role of user in traditional software
development. 21st Comput. Sci. Seminar.

Goodell, H., 1998. End user programming. Proceedings of
the TEEE Symposium on Visual Languages and
Human-Centric Computing, September, 1998, Dallas,
Texas, pp: 215-222.

Hopkins, J., 2000. Component primer. Commun. ACM,
43: 27-30.

Lieberman, H., F. Faterno, M. Klann and V. Wulf, 2006.
End-User Development: An Emerging Paradigm.
Kluwer Academic, The Netherlands.

Monson-Haefel, R., 2000. Enterprise JavaBeans. 2nd Edn.,
OReilly and Associates, California, Pages: 472.
OMG, 1996. The Common Object Request Broker:
Architecture and Specification. Object Management

Group, Salt Lake City, UT, USA., Pages: 177.

Rogerson, D., 1997. Inside COM: Microsoft's Component.
Object Model. Microsoft Press, Bellevue,
Washington, Pages: 376.

Sun Microsystems, 1997, JavaBeans specification. Sun
Microsystems Inc., http://www.cs.vu.nl/i~eliens/
documents/java/white/beans. 101 .pdf.

Zin, AM., 2011. Block-based approach for end-user
software development. Asian J. Inform. Technol.,
10: 2459-258.

200

