Asian Journal of Tnformation Technology 12 (4): 131-139, 2013

ISSN: 1682-3915
© Medwell Journals, 2013

The SQL Injection Attack Detection and Prevention by Classification and Analysis

V. Nithya, 'S. Lakshmana Pandian and "*R. Regan
"Department of Computer Science and Engineering,
Pondicherry Engineering College, Puducherry, India
*University Cellege of Engineering, Panruti, Anna University, Tamil Nadu, India

Abstract: Securing the web application against hacking 1s a big challenge. One of the most common types of
hacking technique to attack the web application is SQL Tnjection Attack (SQLIA). In resulting of this attack an
attacker can access, modify and even destroy the database of a web application. SQL injection is occurring

when data provided by user is not properly validates and 1s mcluded directly in a SQL query. The analysis of
detection and prevention of SQLIA help to avoid this type of attack. Researchers describe a technique to detect
and prevent this kind of manipulation and hence eliminate SQL mjection attack. The existing solution to SQL
injection requires source code modification and increases the possibilities of new injection points. In this study,

researchers propose static and dynamic analysis to detect the SQL mjection attack and we propose decision

tree classification to prevent them.

Key words: SQL mjection attacks, classification, detection, static and dynamic analysis, prevention

INTRODUCTION

With the rise internet services now days all web
applications are depended on the mtemet. Example: online
banking, shopping, university admissions and various
government activities. So, researchers can say that these
activities are the key component of today’s internet
infrastructure. Web applications are vulnerable to a
variety of new security threats. SQL injection attacks are
one of the most significant of such threats. SQL injection
attacks are increasing continuously and posy high level
security risks because they allow attacker’s access to the
database that lie under web applications.

Information 1s the one of mmportant business asset
today and achieving an appropriate level of information
security can be viewed as essential in order to maintan a
competitive edge (Firdos and Sheilh, 2011). SQL Injection
Attacks (SQLIAS) 1s considered as one of the top 10 web
application vulnerabilities of 2010 by the Open Web
Application Security Project (OWASP) (Wassermann and
Su, 2004) and Semiannual report (July to December 2010)
from the Web Hacking Incidents Database (WHID)
(WHID, 2010) shows that SQL injection are consistently
or near the top 21% of the reported vulnerabilities in 2010,
consider as top second attack and recently in August,
2011, hacker steals user records from Nokia Developer Site

using SQL injection attack (Su and Wassermann, 2006).
They are easy to detect and exploit that 13 why SQLIAs
are frequently employed by malicious user for different
reasons. Financial fraud theft, confidential data, deface
website, sabotage, espionage, cyber terrorism or simply
for fun. Throughout, 2010, government, finance and retail
verticals faced different but equally important, outcomes.
Attacks against government agencies resulted in
defacement in 26% of SQL injection attacks while retail
was most affected by credit card leakage at 27% of SQL
injection and finance experienced monetary loss in 64% of
attacks (WHID, 2010). Furthermore, SQL injection attack
techniques have become more common more ambitious
and increasingly sophisticated so there 1s to need to find
an effective and feasible solution for this problem in the
computer security community. One of the important
reasons of this shortcoming is that there is lack of
complete methodology for the evaluation either in terms
of performance or needed source code modification which
in an over head for an existing system. A mechanism
which will easily deployable and provide a good
performance to detect and prevent the SQL injection
attack 1s essential one. So, researchers proposed new
modified SQL injection detection and prevention
static and dynamic

technique by classification,

analysis.

Corresponding Author: V. Nithva, Department of Computer Science and Engineering, Pondicherry Engineening College,

Puducherry, India

Asian J. Inform. Technol., 12 (4): 131-139, 2013

OVERVIEW OF SQL INJECTION ATTACK

SQL (Structured Query TLanguage) is a textual
language used to interact with relational database. The
execution of unit of Structured Query Language is query
which 15 a collection of statements that return a single
resultset. SQL statements can modify the structure of
databases and mampulate the contents of databases by
using various DML, DDL commands respectively. SQL
mjection attack occurs when an attacker insert a series of
SQL code into a query by manipulating data input into an
application (Kiami et al., 2008).

Definition of SQLIA: Most web applications today use a
multi-tier design usually with three tiers: a presentation, a
processing and a data tier. The presentation tier is the
HTTP web interface, the application tier implements the
software functionality and the data tier keeps data
structured and answers to requests from the application
tier. Meanwhile, many large companies developing SQL
based Database Management Systems (DBMS) which
rely on hardware to ensure the desired performance. SQL
injection is a type of attack which the attacker adds
Structured Query Language code to mput box of a web
form to gain access or make changes to data. SQL
mjection vulnerability allows an attacker to flow
commands directly to web applications underlying
database and destroy functionality or confidentiality.

SQL Injection Attacks (SQLIA) process: SQLIA 1s
hacking technique which the attacker adds SQL
statements through a web application’s mput field or
hidden parameter to access to resources. Lack of input
validation in web applications causes hacker to be
successful. Basically SQL process structured in three
phases (Fig. 1):

* An attack sends the malicious HTTP request to the
web application

- >
Webclient|) | HITP | | WEB | | sQL lﬁq
(attacker) request application| | statements '.

|
O]

Select * from user where
username = 'admin' or
1" ="1"where

password = '1234";

— -E

Username =ad|;1in' or'l=1 @
Password = '1234' Varchar = "select *
it

usernam:
password ='"+pass+"

user where

Fig. 1: SQL injection attack data flow

132

Create the SQL statement
Submits the SQL statements to the back end
database

Consequence of SQLIA: The result of SQLIA can be
disastrous because a successful SQT. injection can read
and modify (such as msert, update and delete) sensitive
data from the database (Tajpour et al., 2011), recover the
data on the database management systems and file
system, execute commands (xp cmdshell) to the operating
system and 1t can able to execute admiistrative
operations on the database (such as shutdown the
database). The mamn consequences of these
vulnerabilities are attacks on.

Authorization: Critical data that are stored in a vulnerable
SQIL database may be altered by a successful SQLIA, a
authorization privilege.

Authentication: If there 1s no any proper control on
username and password inside the authentication page,
1t may be possible to login to a system as a normal user
without knowing the right username and/or password.

Confidentially: Usually databases are consisting of
sensitive data such as personal information, credit card
numbers and/or social numbers. Therefore, loss of
confidentially is a big problem with SQIL injection
vulnerability. Actually, theft of sensitive data is one of the
most common intentions of attackers.

Integrity: By a successful SQLIA not only an attacker
reads sensitive information but also, it is possible to
change or delete this private information.

Type of SQL injection attack

Tautologies: A SQL tautology is a statement that is
always true. Tautology-based SQL injection attacks are
usually used to bypass user authentication or to retrieve
unauthorized data by mserting a tautology into a
conditional statement. A typical SQL tautology has the
form or <comparison expression> where the comparison
expression uses one or more relational operators to
compare operands and generate an always true condition.
The aim of tautology-based attack is to inject SQL tokens
that cause the query’s conditional statement to always
evaluate the true. For example, Select * From user Where
username = malani® or 1 = 1; the “or 1 = 17 1s the most
commonly known tautology (Fig. 2).

Piggy-backed query: In the piggy-backed query attacker
tries to append additional queries to the original query

Asian J. Inform. Technol., 12 (4): 131-139, 2013

[MySQL5.5 Command Line Client

= | B i

r vhere usernane='malani’ and passuord='xcubnm’;

» vhere username="nmalani’ or 1=1;

Fig. 2: Tautology SQL mjection attack

[MySQL 5.5 Command Line Client

- e W a B
transferl where Fr=55550;

e B

sferl where fr=0555;DROP IABLE transferl; --';

Query OK, @ rows affected (B.88 sec)>

Fig. 3: Piggy-backed query

string. On the successful attack the database receives and
executes a query string that contains multiple distinct
queries. In this method, the first query is original whereas
the subsequent queries are mjected. This attack 1s very
dangerous; attacker can use it to inject virtually any type
of SQL command. For example, Select *From transferl
Where fr ='5555", DROP Table transferl; --’; Here
database treats above query string as two query
separated by ;" and executes both. The second sub
query is malicious query and it causes the database to
drop the user table in the database (Fig. 3).

Logically incorrect queries: This attack takes advantage
of the error messages that are returned by the database
for an mcorrect query. These database error messages
often contan useful information that allow attacker to find
out the vulnerable parameter in an application and the
database schema. For example, Select * From user Where
1d="1111" AND pessword = '1234' and convert (char, no},
the purpose of this attack 1s to collect the structure and
information of CGL.

Union query: Union query imjection 1s called as statement
myection attack. In thuis attack, attacker msert additional

133

statement into the original SQL statement. This attack can
be done by inserting either a union query or a statement
of the form “< SQL statement>" into vulnerable parameter.
The output of this attack is database will retwrn a dataset
that is union of the result of original query with the result
of the injected query. For example, Select * From user
Where 1d ='1111" Union Select * From member Where 1d
="admin’ --’ and password = '1234".

Stored procedure: In this technique, attacker focuses on
the stored procedures which are present in the database
system. Stored procedures run directly by the database
engine. Stored procedurs 1s nothung but a code and
it can be vulnerable as program code. For authorized/
unauthorized user the stored procedure returns true/false.
As an SQLIA, mntruder input “; Shutdown; --" for
username or password. Then, the stored procedure
generates the following query: Select accounts From
users Where login 1d = '1111" And pass =" '; Shutdown;
This type of attack works as piggy-back attack. The first
original query is executed and consequently the second
query which is illegitimate is executed and causes
database shut down. So, it 15 considerable that stored
procedures are as vulnerable as web application code
(Howard and LeBlanc, 2003).

LITERATURE REVIEW

In order to detect and prevent SOQL injection
attacks, filtering and other detection methods are being
researched. Huang ef al. (2005) proposed WAVES which
is a black box testing used for testing whether SQIL
injection vulnerabilities occur in web applications. The
tool identifies all vulnerable points that can be used by
SQL injection attack to attack a web application. Tt builds
attacks that target these points and monitors the
application how response to the attacks by utilize machine
learmng. However, like all black-box testing techmiques,
it cannot able provide guarantees of completeness.
IDBC-Checker (Gould et al, 2004) was not purely
developed for preventing and detecting SQL irgection
attacks but 1t 13 used to prevent attacks that takes
advantage of type mismatches in a dynamically generated
SQL query string. As most of the SQLIAs consist of
syntactically and type correct queries so this technique
not possible to detect many general forms of these
attacks.

Wassermann and Su (2004) proposed an approach
that uses static analysis combined with automated
reasoming to verify whether SQL mjection queries
generated in the application layer does not contain a
tautology attack. The major drawback of this technique

Asian J. Inform. Technol., 12 (4): 131-139, 2013

is that it able detect only tautology based attack
but unable to detect other possible types of attacks.

WebSSARI (Huang et al., 2004) use static analysis
phases to check taint flows against preconditions for
sensitive functions. Tt works based on sanitized input that
has passed through a predefined set of filters. The
limitation of approach is adequate preconditions for
sensitive functions cannot be accurately expressed so
some filters may be omitted.

Su and Wassermarm (2006) inplement their algorithm
with SQLCHECK on a real time environment. Tt checks
whether the input queries conform to the expected ones
defined by the programmer. A secret key is applied for the
user input dehimitation. The analysis of SQLCHECK
shows no false positives or false negatives. Also, the
overhead runtime rate is very low and can be implemented
directly in many other web applications using different
languages.

Boyd and Keromytis (2004) proposed SQLrand which
uses instruction set randomization of SQL statement to
check SQL imection attack. It uses a proxy to a append
key to SQL keyword. A de-randomizing proxy then
converts the randomized query to proper SQL queries for
the database. The key is not kknown to the attacker, so the
code 1imected by attacker 1s treated as undefined
keywords and expressions which cause runtime
exceptions and the query is not sent to database. The
disadvantage of this system is its complex configuration
and the security of the key. If the key is exposed, attacker
can formulate queries for successful attack.

AMNESIA is a model based technique that combines
static analysis and runtime monitoring (Halfond and Orso,
2005z, b). In static analysis phase, it builds models of the
different types of queries of an application that can legally
generate at each access point of database. Where in
dynamic analysis phase, it intercepts all queries before
they are sent to the database and it check each query
against the statically built models. Queries that violate
against model are reported as SQL injection attack and
prevented from accessing the database. But the limitation
of this techmque 1s it dependent on the accuracy of its
static analysis.

Al et al. (2009)s scheme adopts the hash value
approach to further improve the user authentication
mechanism. They use the user name and password
hash values. SQLIPA (SQIL Injection Protector for
Authentication) prototype was developed in order to test
the framework. The user name and password hash values
are created and caleulated at runtime for the first time the
particular user account 18 created.

Bisht et af. (2010) proposed CANDID. It 1s a Dynamic
Candidate Evaluations Method for automatic prevention

134

of SQL injection attacks. This framework dynamically
extracts the query structures from every SQL query
location which are intended by the developer
(programmer). Hence, it solves the issue of manually
modifying the application to create the prepared
statements.

Swaddler (Cova et al., 2007) analyzed web application
internal states: [t works based on both smgle and
multiple variables and shows an mmpressive way against
complex attacks to web applications. First the approach
describes the normal values for the application’s state
variables in critical points of the application’s
components. Then, during the detection phase it monitors
the application’s execution to identify abnormal states.

Wassermann and Su (2004) proposed an approach
that uses a static analysis combined with automata
reasoning. This technique verifies that the SQL queries
generated in the application usually do not contain
tautology. This techmque 1s effective only for SQL
iyjections that insert a tautology. This techmque 1s
effective only for SQL injections that insert a tautology in
the SQL queries but cannot detect other type of SQL
injection attacks.

Security Gateway (Scott and Sharp, 2002) is a proxy
filtering system that enforces mput validation constraints
on the data flowing to a web application. For application
parameters such as data flow from web page to
application server, developers provided with specific
constraints and transformations applied on such
parameters using Security Policy Descriptor Language
(SPDL). Because SPDL allow developers with desired
freedom m expressing their polices. However, tlus
approach 1s human based technmque where developers not
only know about data to be filtered but also about filters
that apply to the data.

Fu et al. (2007) proposed a framework for web
application provide a function that can be to prevent SQL
iyjection. An mput validator prohibits user input from
including meta-characters to avoid SQL imection. But if
we want to include meta-character in the input we cannot
prevent SQL injection.

Valeur et al. (2005) proposed Intrusion Detection
System (IDS3) to detect SQL myjection attacks. Their IDS
system 18 based on a machine techmque which trained
using a set of application queries. The teclmique monitors
the application at runtime using typical set queries to
identify queries that does not match the model system. Tt
can able to detect attacks with a high rate of success. But
limitation of techmiques 1s that they cannot provide
guarantees about their detection capabilities smce their
success 1s dependent on the quality of the training set
used. A poor training set to technique does not to
generate a large number of false positive and negatives.

Asian J. Inform. Technol., 12 (4): 131-139, 2013

Buehrer et al. (2005) adopt the parse tree framework.
They compared the parse tree of a particular statement at
runtime and its original statement. They stopped the
execution of statement unless there 1s a match. This
method was tested on a student web application using
SQLGuard. Although, this approach is efficient, it has two
major drawbacks: additional overheard computation and
listing of input (black or whate).

SAFELI: Fu et al. (2007) proposes a static analysis
framework m order to detect SQL mjection vulnerabilities.
SAFELI framework amms at identifying the SQL mnjection
attacks during the compile-time. This static analysis tool
has two main advantages. Firstly, it does a white-box
static analysis and secondly, it uses a hybrd-constramnt
solver. For the white-box static analysis, the proposed
approach considers the byte-code and deals mainly with
strings. For the hybrid-constraint solver, the method
unplements an efficient string analysis tool which 1s able
to deal with Boolean, integer and string variables.

DIWeDa approach: Roichman and Gudes (2008) proposed
IDS (Intrusion Detection Systems) for the backend
databases. They use DIWeDa, a prototype which acts at
the session level rather than the SQI statement or
transaction stage to detect the intrusions in web
applications. The proposed framework 13 efficient and
could identify SQL mjections and busmess logic
violations too.

SecuriFly: SecuriFly (Martin et al., 2005) 1s tool that 1s
unplemented for java. Despite of other tool, chase string
instead of character for taint information and try to
sanitize query strings that have been generated using
tainted input but unfortunately injection in numeric fields
cannot stop by this approach. Difficulty of identifying all
sources of user input is the main limitation of this
approach.

Lee et al. (2011) proposed an approach to detect SQL
mjection attacks is based on static and dynamic analysis.
This method removes the attribute values of SQL queries
at runtime (dynamic method) and compares them with the
SQL quenes analyzed in advance (static method) to detect
the SQL ijection. Since, detection 1s based on removing
attribute value of query which leads to integrity problem.

PROPOSED MODEL

The application programmer can send query requests
by running the application program. The requested query
sent to the classification module where it enquires with
past queries of all registered users and using decision

135

making rules classify user as ethical and unethical. The
classification directs the ethical user queries to undergo
static query and dynamic analysis. During static analysis
extract query structure from the programs and generate
DFA (Deterministic Finite Automata) for static query
called as static model. Similarly at runtime capture the
dynamic query and generate DFA (Deterministic Fite
Automata) known as dynamic model.

Now Validate Dynamic Query Model with the Static
Query Model. Tf SQL injection attack occurs it will add
SQL token to the user mput and hence there will be
change in the query structure. If the dynamic query
executed contamns any malicious code then it does not
match with the Static Query Model then 1t will be rejected
not allowed to access the database as show in Fig. 4.

Classification module: The classification is used to find
the similar data items which belong to the same class.
Decision tree learmng, used i data mimng, statistics and
machine learning. Decision tree is a predictive model
which maps observations about a data item to
conclusions about the data item’s target value.

Descriptive names for such tree models are called as
classification trees or regression trees. In classification
tree structures, leaves denotes class labels and branches
represent conjunctions of features that lead to those class
labels. Tn decision analysis, a classification tree can be
used to represent decisions and decision making.

For the purpose of prevention, the users are first

classified mto ethical and unethical users using their past

Reject the
unethical user
Static DFA
query structure
Modification in
source code

!
Falch the dynamic quer_!,i

Report SQL
injection attack

Fig. 4. Overview of proposed system

Asian J. Inform. Technol., 12 (4): 131-139, 2013

queries by using the decision tree classification algorithm
where the patterns are stored in the database. After
getting the results of classification, only the ethical users
are allowed to access the next query in web application
and further queries are validated using static and dynamic
analysis. Example: when the user login to online banking
application by analysising their past queries of that user
they 1s considered as ethical and unethical. Some time
ethical user also hack the web application so to, enhance
detection of SQL wyection attack further the application is
validated using static and dynamic analysis.

Figure 5 and 6 show dynamic query generated in
login page 1s compared with past query, since the login
form is not injected the SQL injection attack its result as
ethical user and allow access the next page in the web
application, e.g., Net banking application.

In Fig. 7 and 8 smce user name is imected with
tautology expression the dynamic query generated is
compared with past query it results as unethical user and
block access of the web page.

Static analysis: In the context of computer science, static
analysis defines to the automated process of analyzing
code without runming the code that 15 being analyzed. In
static analysis process, it determines the query structure.
This step identifies the all possible queries present in the
program and generates the structure for these queries that
is named as Static Query Model.

2 Gongle (] b ke

Fig. 5: Login form

Lo | w1

IhOsEAGRO Wb ARDICAtonFch jsp
T Do vou want Googhe CHrome To smve your — [Smﬂlmu\»ordl vy for tivis sive | 3

< | w A

wthical user!

ek malan click

Fig. 6: Successful login

136

Static Query Model can be represented by the
Deterministic Finite Automata (DFA) of the query which
represents all possible values query. DFA 1s generated by
exacting regular grammar from query. Example: Select *
from transfer] where fr = "num’. Figure 9 shows the DFA
structure of the earlier query similarly exact DFA structure
of all queries in web application, e.g., Net banking
application.

Dynamic analysis: Dynamic analysis 1s the testing and
evaluation of a program by executing data in real-time.
Dynamic analysis is a process of testing and evaluation
of a program by executing data in real-time. In dynamic
analysis step, it takes input as the query formed at the
runtime and form the Dynamic Query Model for each
query. In Dynamic Query Model string of queries are
tokenized mto SQL token such as special strings,
characters, keywords, identifiers and numbers. Example:
Query string present i the program.

@ Mauila Feefas el
fie Eot Weew Higtory Bockmariks [oels Help

Sl o] o it/ TecalhestB080 Web Apphrstion] findes | 4q- s
8, MostVitted || Gefting Started 2 Lutest Headlines

bt o athon BB ativn | e jyp

Tsername: malani or 1=1
Password sessas

Submil

New User Register Click Here!

Forget User Password Click Here!

Fig. 7: Login form with tautology injection

Fle Edit Yiew History Bootmarks Icols Hep
@ -c ol e 02 -] [~ Geege D]
£ Most Visited |] Getting Started 2, Latest Headlines
PPage | | |ISPPage | | |JPPage | | |ISPPage | || ISPPa..x | [+ -|
g ocabonttognt - [Bememer | [Moeriortnsste] [Nottow | x

unethical!

Dore

Fig. 8 Tautology injected query blocked

Select

Fig. 9: Static DFA form of the query

Asian J. Inform. Technol., 12 (4): 131-139, 2013

® Untitlec < (&) Departs > Acader ®) Prat
|« & | @ localhost:8080/ WebApplication7/sunl jsp b LA

™A Gmail -

Fig. 10: View the transfer amount details

@ Untitied Document
-« € | @ localhost8080/WebApplication7/tran.jsp

28 Gongle 191 Gmail - Contact Ma... £ New folder (@ Anna University of T.

fr toam amm
5555 1233 17000

Fig. 11: Display of transfer amount details

@ Moritia Ferfax o S
[Bt orw Higtory Bockmarks Tooh felp

- - EA hitpeTecalhostA080 WebApphicationd sunl js 17 = | |4~ Google 2
B Mot Veted || Getting Started 5 Lstest Headline:

httpd focathost:B0...plicationd/sunlyp |
VIEW THE TRANSFER AMOUNT DETAILS

ACCOUNE: 5555 0ROP TABLE kanster] achon |

Done

Fig. 12: Fund transfer details with Piggy backed mjection

\ [F=REE==S)

/" (2 Untitied Docurnent
- & | © localhost 8080/ WebApplication7/tre o @ A,
2§ Google 1 Gmail - ContactMa... (] New folder (T} Anna University of T... ==

Tokens:6
select
Tokens:S

Tokens:4
from
Tokens:3
transferl
Tokens:2
where
Tokens:1
fmr
5555

Abnormal !

Fig. 13: Piggy backed injected query blocked

Table 1: Results of SQLIA prevention and detection

Select * from tranfer] where fr ="' +um+°; When user
type account number information as '5555' then the query
at runtime become “Select name from tranferl where
fr ='5555 %, 7, then its tokemzed and compare with static
DFA Model.

In Fig. 10 view fund tranfer page is not injected with
SQL injection and query is compared with DFA structure
and result as normal and display transfer details in Fig. 11.

Validation: In validation step dynamic query 1s parsed
against static DFA Query Model. If any malicious SQL.
input code given to the system then the dynamic query
will not be validated against static DFA Query Model and
hence this abnormal query is reported as SQL Injection
Attack (SQLIA) and blocked accessing from database.

Since, the Fig. 12 view transfer details page 1s injected
using Piggy backed injection the queries are compared
with DFA structure of the query and query stated as
abnormal and blocked from accessing to database as in
Fig. 13.

EXPERIMENT AND EVALUATION

The proposed system simulated by implementing
online Banking application which is known to be SQLIA
vulnerable (Table 1). The application have been deployed
on glassfish server with MySQL as database. The users
of application are classified mto ethical and un-ethical
users using their past queries by applying the
classification algorithm where the patterns are stored in
the database. After getting the results of classification,
only the ethical users are allowed to access the next query
and remaining queries are validated further using static
and dynamic analysis. Validation function parse Dynamic
Query Model against Static Query Model. If validation
functions returns true then the query 1s allowed to access
the database else query is reported as SQL injection and
block accessing from the database.

From the above results by enhancing static and
dynamic analysis technique it is possible to detect all
types SQL injection attacks in web application.

Comparative analysis: In this study, researchers note
down how various schemes researchers against the
identified SQL imyection attacks and compare with the
proposed research. Table 2 shows the comparative
analysis of the SQL injections prevention techniques and
the attack types. The symbol “s” 15 used to denote that
technicues possible to stop successfully all attacks of
that type.

Application No. of SQL queries

Average No. of tokens per query

Ne. SOL injection queries Prevention Detection

Online banking application 758 13

68 90% 99%

Asian J. Inform. Technol., 12 (4): 131-139, 2013

Table 2: Comparison of SQLIA detection and prevention techniques with respect to attack types

Detection and prevention techniques Tautologies

Piggy-backed query Logically incorrect

Union query Storedprocedure

AMNESIA (Halfond and Orso, 2005a, b)
CANDID (Bisht ef al., 2010)

DIWeDa (Roichman and Gudes, 2008)
JDBC Checker (Gould et ., 2004)

DS (Valeur et af., 2005)

Tautology checker (Wassermann and Su, 2004)
SAFELI (Fu et al., 2007)

SecuriFly (Martin et af., 2005)

Security gateway (Scott and Sharp, 2002)
SQLIPA (Ali ef al., 2009)

SQLCheck (Su and Wassermann, 2006)
SQLGuard (Buehrer et ai., 2005)
SQLrand (Boyd and Keromytis, 2004)
Swaddler (Cova et af., 2007)

WAVES (Huang et ai., 2005)

Proposed method

* T T 8 8 8 B8 T 2 X @ 2 2D KO

L] L J X

® 0 C X 8@ X OO0 8 X OO XQC
* 0 C 8 8 @8 X0 0 8 X OO XQ
* 0 C 8 8 @ X0 O 8 XOO XC e
00 ¥ X X X OO @ X OO0 Xa

#: Possible, o: Partially possible x: Impossible

The symbol “x” is used to denote that technique is

not able to stop attacks of that type. The symbol “0” is
used for techmque that stop the attack type only partially
because of limitations of the underlying approach. Even
though many techniques are used for detection or
prevention techniques, only some of them were
umplemented in practicality. Hence, this comparison 1s not
based on empirical experience but rather it is an analytical

evaluation.
CONCLUSION

Most of the web applications employs intermediate
layer to accept a request from the user and retrieve data
from the database. Most of the time scripting language
used to build intermediate layer. SQL injection attack is
common hacking techniques used by hacker to attack
back end of web application. Generally attacker tries to
confuse the intermediate layer technology by reshapmng
the SQL queries. A number of methods are used to avoid
SQL injection attack at application level but only some of
them were inplemented in practicality. In this proposed
research, the SQL injection attack will be prevented by
classifying users as ethical and unethical and by
comparing static and dynamic analysis the SQL injection
attack will be detected. In static analysis, the DFA
structure of the query at compile time will be analyzed
where as in dynamic DFA structure of the query at run
time 1s analyzed.

REFERENCES
Ali, S, S.K. Shahzad and H. Javed, 2009. SQLIPA: An

authentication mechamsm against SQL injection. Bur.
T. Sci. Res., 38: 604-611.

138

Bisht, P., P. Madhusudan and V. N. Venkatakrishnan, 2010.
Candid: Dynamic candidate evaluations for automatic
prevention of SQL myjection attacks. ACM Trans. Inf.
Syst. Security, 5: 1-39.

Boyd, SW. and AD. Keromytis, 2004. SQLrand:
Preventing SQL injection attacks. Proceedings of the
2nd Applied Cryptography and Network Security
Conference, June 8-11, 2004, Yellow Mountamn, China,
pp: 292-302.

Buehrer, G., BW. Weide and P.A.G. Sivilotti, 2005. Using
parse tree validation to prevent SQL injection attacks.
Proceedings of the 5th Intemational Workshop on
Software Engineering and Middleware, September 5-
6, 2005, Lisbon, Portugal, pp: 106-113.

Cova, M., D. Balzarotts, V. Felmetsger and G. Vigna, 2007.
Swaddler: An approach for the anomaly-based
detection of state violations in web applications.
Proceedings of the 10th International Symposium

m Intrusion Detection,

Gold Goast, Australia,

on Recent Advances
September 5-7, 2007,
pp: 63-86.

Firdos, M. and A. Sheikh, 2011. Secure query processing
by blocking SQL injection attack (SQLIA). Int. T. Res.
Manage., Vol. 3.

Fu, X., X. Lu, P. Verger, B.S. Chen, K. Qian and I.. Tao,
2007. A static analysis frameworlk for detecting SQL.
mjection vulnerabilities. Proceedings of the IEEE
Anmnual International Computer Software and
Application Conference, Volume 1, July 24-27, 2007,
Beijing, pp: 87-96.

Gould, C., Z. Su and P. Devanbu, 2004. JDBC checker: A
static analysis tool for QL/IDBC applications.
Proceedings of the 26th International Conference on
Software Engineering, May 23-28, 2004, Davis, CA.,
USA., pp: 697-698.

Asian J. Inform. Technol., 12 (4): 131-139, 2013

Halfond, W.G. and A. Orso, 2005a. Combining static
analysis and runtime monitoring to counter
SQL-imjection attacks. Proceedings of the 3rd
International ICSE Workshop on Dynamic Analysis,
May 2005, St. Lows, MO., USA., pp: 22-28.

Halfond, W.G. and A. Orso, 2005b. Amnesia: Analysis
and momitoring for neutralizing SQL-mjection attacks.
Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering,
November 7-11, 2005, Long Beach, CA., USA,
pp: 174-183.

Howard, M. and D. LeBlanc, 2003. Writing Secure Code.
2nd Edn., Microsoft Press, New York USA.,
ISBN-13: 9780735617223, pp: 768,

Huang, Y.W., CH. Tsai, T.P. Lin, S.K. Huang, D.T. Lee
and S.Y. Kuo, 2005. A testing framework for Web
application security assessment. Comput. Networks,
48: 739-761.

Huang, YW., F. Yu, C. Hang, CH. Tsa, D.T. Lee
and 3.Y. Kuo, 2004. Securing web application code
by static protection.
Proceedings of the 13th Intemational Conference on
World Wide Web, May 17-20, 2004, ACM, New
York, USA., pp: 40-52.

Kiani, M., A. Clark and G. Mohay, 2008. Evaluation of
anomaly based character distribution models in the
detection of SQL imyection attacks. Proceedings of
the 3rd International Conference on Availability,
Reliability and Security, March 4-7, 2008, Barcelona,
pp: 47-55.

Lee, I, S.I.S. Yeoc and J. Moond, 2011. A novel methed
for SQL injection attack detection based on
removing SQL query attribute. J. Math. Comput.
Mod., 55: 58-68.

analysis and runtime

139

Martin, M., B. Livshits and M.S. Lam, 2005. Finding
application errors and security flaws using PQL: A
program query language. Proceedings of the 20th
Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages
and Applications, Volume 40, October 16-20, 2003,
San Diego, CA, USA., pp: 365-383.

Roichman, A. and E. Gudes, 2008. DIWeDa-detecting
intrusions in web databases. Proceedings of the 22nd
Annual TFTP WG 11.3 Working Conference on Data
and Applications Security London, Tuly 13-16, 2008,
UK., pp: 313-329.

Scott, D. and R. Sharp, 2002. Abstracting application-level

web security. Proceedings of the 11th International

Conference on the World Wide Web, May 7-11, 2002,

Honolulu, Hawaii, USA., pp: 396-407.

Z. and G. Wassermann, 2006. The essence of

command injection attacks in web applications.

Proceedings of the 33rd ACM Symposium on

Principles of Programming Languages, January 11-13,

2006, Charleston, South Carolina, USA., pp: 372-382.

Tajpour, A., S. Ibralum and M. Masrom, 2011. SQL
injection detection and prevention techniques. Int.
I. Adv. Comput. Technol., 3: 82-91.

Valeur, F., D. Mutz and G. Vigna, 2005. A learning-based
approach to the detecton of SQL attacks.
Proceedings of the 2nd International Conference on
Detection of Intrusions and Malware and
Vulnerability Assessment, July 2005, Vienna, Austria,
pp: 123-140.

WHID, 2010. Report from July December 2010. Trust
Wave Holdings.

Wassermann, G. and Z. Su, 2004. An analysis framework
for security in web applications. Proceedings of the
FSE Workshop on Specification and Verification of
Component-Based Systems, October 2004, Atlanta,
GA., pp: 70-78.

Su

