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Abstract: The proposed research in the denoising of speech signal is based on the concepts of Wavelet
Threshelding by imposing quantum parameters. The idea of signal denoising is to preserve the signal features
while reducing the noise level. Various denoising approaches exist in which wavelet-based pomnt wise
thresholding approaches are extensively adopted in many application fields like speech processing
applications, medical applications, etc. For signal denoising based on wavelet thresholding, there are two
decisive aspects, namely, the use of a proper thresholding function and the estimate of the noise standard
deviation. Both greatly mampulate the quality of the denoised signal. In this study, a simple wavelet-based
denoising approach is performed for real time speech signal which uses the modified linear expansion of
thresholds based on Stein’s Unbiased Risk Estimation (SURE) and the noise standard deviation estimation
depending on the number of vanishing moments of the wavelet transform. Investigational results demonstrate
that higher Signal to Noise Ratio (SNR) with lower mean square error.
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INTRODUCTION

Applied scientists and engineers who work with data
obtained from the real world know that signals do not
exist without noise. Under ultimate conditions, this noise
may decrease to such insigmficant levels while the signal
mcreases to such significant levels that for all practical
purposes denoising are not essential. Unfortunately, the
noise corrupting the signal, more often than not must be
removed 1n order to recover the signal and proceed with
further data analysis. The noise removal may take place in
the original signal (time-space) domain or in a transform
domain.

If the later, should it be the time-frequency domain
via the Fourier transform or the time-scale domam via
the Wavelet transform. Enthusiastic supporters have
described the development of wavelet transforms as
revolutionizing modern signal and 1mage processing over
the past two decades.

For a review of available software libraries and an
introduction to some of the wavelet literature, refer to the
survey by Benazza-Benyalia and Pesquest (2005).
Meanwhile, some waveforms such as the mean frequency
waveform and the spectral width waveform are very useful

to evaluate the MSE and standard deviation showed by
Eldar et al. (2004, 2005) and Eldar and Merhav (2004). The
spectrogram mndices are all extracted from the maximum
frequency waveform of the speech signal spectrogram
which can be calculated using the Short-Time Fourier
Transform (STFT) (Donoho and Johnstone, 1994). Their
precision, together with the precision of the mean
frequency waveform and the spectral width waveform
which 1s estimated for continuous speech signals is
directly influenced by the estimation resolution of the
maximum frequency waveform (Stein, 1981). Any extra
frequency component in the speech signal coming from
noise may reduce the estimation resolution which harms
further processing. Therefore, it 1s a preliminary and
important step to denoise the continuous speech signal,
especially when the SNR is low (<10 dB).

Because of the non-stationary characteristic of the
speech signal, the traditional spectrogram enhancement
methods such as the adaptive filtering method
(Donoho and Johnstone, 1994, 1995) which denoises
the signal by simply optimizing the Mean Square Error
(MSE) are not sufficient. Once a good denoising method
1s used, the MSE would be mimmized with no additional
frequency components induced algorithm is used.
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Minimax estimation is a cautious approach aiming at
finding optimal estimators in the worst case situation
compatible with the available information. Minimax
problems have been the focus of many works in statistics.
More recently, a renewal of interest has been observed for
minimax signal estimation problems and among many
interesting new results, connections between these
problems and linear matrix inequalities have been shown
by Eldar et al. (2004, 2005) and Eldar and Merhav (2004)
for some kind of minimax mean square estimation
problems. In the meantime, non-linear estimation has
gained popularity m signal processing problems.

For example, wavelet regression methods using
thresholding operators have been developed and they
have been shown to be optimal from an asymptotic
mimmax viewpoint for certain classes of regular signals
(Tusem, 2003). A similar approach was used by
Combettes (1996, 2003) and Combettes and Pesquet (2004)
to develop more sophisticated multivariate estimates for
multt component image denoising. Like the Fourer
Transforms (FT), a Wavelet Transform (WT) represents a
signal in another domain (Strange and Nguyen, 1996) a
time-frequency domain. However, wavelet transforms
are more general than the Fourier transform. Unlike the
Fourier transform, wavelet transforms may describe
localized signals more efficiently. For example, a wavelet
transform may describe a function into different frequency
components and then study each component with a
resolution matched to its scale.

In this study, a different approach for optimizing
nonlinear estimators relies on the use of Stein’s Unbiased
Risk Estimator (SURE) m problems mvolving additive
Gaussian noise. The SURE Method was used to build
adaptive thresholding estimators. The Stein’s Unbiased
Risk Estimate (SURE) principle was also applied by
Oppenhein et al. (2001) for signal restoration problems
formulated as constrained convex optimization problems.

MATERIALS AND METHODS

Wavelet thresholding: Assume the observed signal
v = [¥i Vo -on Yuul© given by:

y,=x+z i=1.,N (1)

Where:
x;, = Samples of noise-free signal x
(Gaussian white noise with mdependent identical

distribution (i.i.d.), i.e., z N(0, 0°) shown in Fig. 1

1

Z

From noisy signal y, researchers want to find an
approximation x to the onginal signal x that mimimizes the
Mean Squared Error (MSE) as follows:
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Fig. 1: Wavelet denoising process

R(ﬁ\(,x) = Iil X-x (2)
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where, x=[x,x,, x,,..x, ] and ;g=[;(1 ,;42
use mean instead of the mathematical expectation because
the optimal solution is desired for each individual noisy
signal. Let W be an orthonormal wavelet transform. After

% G Here,

.....

applying w to Eq. 4 then Eq. 4 can:

3)

w = st+b

with w = [w,, Wy, .., W] = W, s =[5, 8, ..., 5,]' = W, and
b = [b, b, ... by]" = W,. Since, W is an orthonormal
transform, the noise remains Gaussian with same statistics
in the orthonormal wavelet domain, 1.e., b, ~N(0,0%). Let
6(-) be a wavelet thresholding function. Then, the
estimate can be expressed as follows:

k=W OW,) @

Thus, the risk function given in Eq. 2 can be
expressed as:

R@m:§®«f:§i@ﬁy &)

where, § = 0 (). Many thresholding functions have
been presented. The most well-known thresholding
functions are the hard thresholding function and the soft
thresholding function.

Soft and hard thresholding: Signal denoising using
the (Discrete Wavelet Transform) DWT consists of
three successive procedures, specifically, signal
decomposition, thresholding of the DWT coefficients and
signal reconstruction. Firstly, researchers carry out the
wavelet analysis of a noisy signal up to a chosen level N.
Secondly, researchers perform thresholding of the detail
coefficients from level 1 to N. Lastly and researchers



Asian J. Inform. Technol., 12 (5): 154-159, 2013

synthesize the signal using the altered detail coefficients
from level 1 toN and approximation coefficients of level N.
However, it is generally impossible to remove all the
noise without corrupting the signal. As for thresholding,
researchers can settle either a level-dependent threshold
vector of length N or a global threshold of a constant
value for all levels. The threshold estimate a for denoising
with an orthonormal basis 1s given by:

8= G,/ZlogL

Where the noise is Gaussian with standard deviation
0 of the DWT coefficients and L is the number of samples
or pixels of the processed signal. From a different point of
view, thresholding can be soft or hard. Hard thresholding
zeroes out all the signal values lesser than &. Soft
thresholding does the same thing and apart form that
subtracts the values larger than 8. On the contrary to hard
thresholding, soft thresholding causes no discontinuities
1n the resulting signal.

(6)

Threshold determination: A small threshold may yield a
result close to the input, yet it 1s noisy. On the other hand
a large threshold produces a signal with a large number of
zero coefficients. This leads to a smooth signal. Providing
too much attention to smoothness, however, destroys
details and in image processing may cause blur and
artifacts. To investigate the effect of threshold selection,
researchers performed wavelet denoising using hard and
soft thresholds on four signals popular in wavelet

literature, hard and soft thresholding with threshold

(Fig. 2 and 3) are defined as follows. The hard
thresholding operator is defined as:
w if |jw|> 8
0, (w) = ¥ _ (7
0 otherwise

On the other hand the soft thresholding operator 1s

defined as:

>3

otherwise

(8)

6.%) - {mgn(w)(

The main idea of soft thresholding is that noise is
removed by shrinking or killing coefficients that are
insignificant relative to some threshold value.

Threshold selection rules: According to the basic
noise model, four threshold selection procedures are
implemented. Each rule corresponds to a tptr option in the
command, thr = thselect (y, tptr) which returns the
threshold value:
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3: Result of soft thresholding

Option tptr = 'rigrsure’ uses for the soft threshold
estimator a threshold selection rule based on Stein’s
Unbiased Estimate of Risk (quadratic loss function).
You get a measure of the risk for a particular
threshold value t. reducing the risks in t gives a
selection of the threshold value

Option tptr = 'sqtwolog' uses a fixed form threshold
yielding mimmax performance multiplied by a small
factor proportional to log(length(s))

Option tptr =
previous options. As a result, the SURE estimate is
very noisy if the signal-to-noise ratio is very small.
The fixed form threshold 1s used i such situations
Option tptr = 'minimaxi' uses a fixed threshold chosen
to produce mimimax performance for mean square
error against an 1deal procedure.
principle is used m statistics to design estunators.
Since, the de-noised signal can be mcorporated to
the estimator of the unknown regression function,
the minimax estimator is the option that recognizes

'heursure’ 15 a mixture of the two

The mimmax
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the minimum, over a given set of functions of the
maximum mean square error. y is a signal which is to
be denoised

Signal transformation: In signal processing, wavelets are
used for denoising, detecting trends, breakdown points,
discontinuities in higher derivatives and self-similarity in
signals. At first, researchers focus on discontinuity
detection. For the speech signal Fig. 4 where
demonstrates the use of the db4 wavelet for impulse
detection, i.e., detection of a discontinuity in frequency.
The impulse is generated artificially for the purpose. The
db4 wavelet is chosen because of its good performance in
this case. The decomposition runs up to level 3 which is
enough to make the discontinuity apparent. This study
describes signal denoising with the application on the
speech signal. Input is a continuous speech signal given
through microphone.

The signal is obtained as a column vector. This
column vector is converted into a square matrix. Now
Hilbert transform 1s performed on this matrix so that the
numerical values of the signal can be obtained. FFT 1s
performed on the signal so that the spectral values of the
signal can be obtained. As the concept of QSP is to be
satisfied, now the spectral matrix 1s being converted mto
orthogonal matrix using Gram-Schmidt orthogonalization
procedure. Tn the orthogonal matrix, white noise with zero
mean and unit standard deviation added to the signal and
then researchers take wavelet transform to noisy input
speech signal. The wavelet transform consist of three
steps:

Calculate the wavelet transform of the noisy signal
Modify the wavelet coefficients according to some
thresholding rule

Calculate the inverse transform using the modified
wavelet coefficients
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Fig. 4: Noise interference input signal
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Stein’s unbiased risk estimator: To recover a function
of unknown smoothness from noisy, sampled data,
researchers set up a procedure, sure shrink which
suppresses noise by thresholding the empirical wavelet
coefficients. The thresholding is adaptive threshold level
is assigned to each dyadic resolution level by the
prnciple of mimmizing the stein unbiased estimate of risk
(sure) for threshold estimates. The computational attempt
of the overall procedure is order N log (N) as a function of
the sample size N. Sure shrink is smoothness-adaptive: if
the unknown function contains jumps, the reconstruction
(essentially) does also; if the unknown function has a
smooth piece, the reconstruction is (essentially) as
smooth as the mother wavelet will allow.

The procedure optimally
smootlmess-adaptive: it 1s near-mimimax simultaneously
over a whole interval of the Besov scale the size of this
interval depends on the choice of mother wavelet.
Traditional smootling methods: kernels, splines and
orthogonal series estumates even with optumal choices of
the smoothing parameter would be unable to performing
a near-Minimax way over many spaces in the Besov scale.
The proposed SURE-based shrinkage function which 1s
defined as:

s I a sense

esure(wi) = 2 ak(pk(wl) (9)
k=1

where, o (ke([1, K]) are the unknown parameters.
However, the shrinkage function 6 Sure(.) does not
consider the mtrascale correlations between wavelet
coefficients which can be used to further improve the
performance of the noise reduction algorithm. Moreover,
the computation time can be reduced by decreasing
the number of parameters ak. In the following study,
researchers therefore propose a simple and effective
SURE-based intrascale shrinkage method which exploits
these correlations and decreases the number of unknown
parameters (Fig. 5).

Researchers use the averaged magnitude of the
neighbouring coefficients to quantify the intrascale
correlations between wavelet coefficients which can be
expressed by:

(10)

where, M 1s the number of neighboring coefficients. In
practice, it 1s sufficient to set M = 2. In the following
study, the impact of M on the performance of the
proposed method is discussed. In order to use the
intrascale correlation coefficient ci, researchers mtroduce
the following shrinkage function:



Asian J. Inform. Technol., 12 (5): 154-159, 2013

107
0.8
067
0.4]
0.2]
0.0|
-0.2]
-04}
-0.6]
-0.8+

Power (W)

-1.0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (msec)

Fig. 5: Result of sure thresholding

B (W) = W, + ai(c, ) w, W, (a1
where, a 18 the unknown parameter and:
x (12)
ux) = eXp(anz }

This shrinkage function can be regarded as a
modified version of 8 Sure() by decreasing the number
of parameters ak and using the intrascale correlations
between wavelet coefficients. The function p(x) 1s a
simplified version of @(x). The Eq. 7 15 the proposed
mtrascale shrinkage function which contains two
unknown parameters and o,. In Eq. 12, a robust estimate
of 0, is given by:

. _ MAD
0.6745

Zp
p+1

(13)

n

Where:

MAD = The median absolute deviation of the finest
wavelet coefficients

= The number of vanishing moments of the
wavelet transform

P

For fixed o, researchers can obtain the optimal
estimate of a by minimizing the Mean Squared Error
(MSE), 1.e.:

1 i
a = arg min—
gmin_—>;

1=1

’ (14)

0,0 (W0 - 1,

RESULTS AND DISCUSSION

In the simulations, researchers use the standard mput
speech signal. The noisy signals are created by adding
Gaussian white noise with different noise levels to the
signals. The proposed method is evaluated by comparing
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models

it with some most commonly used shrinkage functions,
namely, Heursure Shrinkage Function (HSF), Rigrsure
(RSURESF) and Minimax (MSF).

For the sake of evaluating the performance of these
methods, the Mean Square FError (MSE) 15 used as the
quantitative criterion. Tn all comparisons, researchers use
the stationary Daubechies wavelet with four vanishing
moments over three decomposition levels which
means p = 4. Figure 6 shows the visual quality of the
various algorithms for speech signal. As can be observed,
the proposed method exiubits less distortion then the
others.

Table 1 displays the MSE results generated by all
algorithms for the test signals. The method clearly
outperforms HSF, RSURESF and MSF 1in terms of M3SE
and the average values are nearly 0.02, 0.02 and 0.01,
respectively (Fig. 7).
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Table 1: MSE value for different threshold models

Method of thresholding MSE value
Hard thresholding 0.020366
Satt thresholding 0.018797
Rigrsure thresholding (hard) 0.020384
Heursure thresholding (hard) 0.020384
Minimax thresholding (hard) 0.020304
Rigrsure thresholding (soft) 0.019581
Heursure thresholding (soft) 0.019581
Minimax thresholding (soft) 0.018601
Sure thresholding 0.010027

CONCLUSION

In this study, researchers unproved the performance
of Sure thresholding function by decreasing the number
of unknown parameters and using the new estimate of
noise standard deviation. The new approach does not
need any prior statistical modelization of the wavelet
coefficients. The experimental results demonstrate the
efficiency of the new approach which can obtam lower
MSE than other denoising thresholding approaches for
noisy signals.
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