Asian Journal of Tnformation Technology 13 (10): 657-660, 2014

ISSN: 1682-3915
© Medwell Journals, 2014

Review and Development of Software Testing Defect Corrctive
Model (STDCM) for Software Projects

K. Karnavel and R. Dillibabu
Department of Industrial Engineering, Anna University, Chennai-25, India

Abstract: There have been a number of methods used to estimate the number of defects remaining in software.
In this study, researchers present an analysis for the method of COQUALMO Model and 1t 18 difficult to
mcrease the quality without increasing the cost and time. The COQUALMO Model usually tries to predicts
the residual defects in the software product. This model has pipes in stage by stage of various phases. They

are mjecting the defects and removing the defects which involves more computation time, cost and man power

to predict the residual defects. We developed a new static model for estimating the number of remaming

residual defects m the software product have following assumptions: the existing model can produce the
minimum quality. But STDCM achieves the maximum customer satisfaction, since peer reviews have been

conducted to find the bug in earlier for improving the quality and STDCM produces maximum quality of the

software without increasing the cost and time and there 1s a chance for getting very less residual errors at the
testing stage. Software Testing Defect Corrective Model (STDCM) shows its attraction in its applicability to

a broader scope of circumstances.

Key words: Reviews, mspections, residual defects and cost estimation, scope, quality

INTRODUCTION

Software has become critical to advancement in
almost all areas of human endeavor. The art of
programming only 1s no longer sufficient to construct
large programs. There are serious problems in the cost,
timeliness, maintenance and quality of many software
products. Software engineering has the objective of
solving these problems by producing good quality,
maintainable software, on time, within budget. To achieve
this objective, we have to focus in a disciplined manner
on both the quality of the product and on the process
used to develop the product. The definition of software
engineering by Fritz Bauer in 1968 stated as “The
establishment and use of sound engineering principles in
order to obtain economically developed software that is
reliable and works efficiently on real machines”. Stephen
Schach defined the same as “A discipline whose amn 1s
the production of quality software, software that is
delivered on time, within budget and that satisfies its
requirements” (Schach, 1990). Both the definitions are
popular and acceptable to majority. However, due to
increase in cost of maintaining software, objective is now
shifting to produce quality software that is maintainable,
delivered on tume, within budget and also satisfies its
requirements.

SOFTWARE TESTING

Software testing is a research that is performed to
help with the necessary information about the quality of
the software and the user can be sure that the product
meets its predefined objectives.

SOFTWARE QUALITY

Kitchenham and Pfleeger (1996)’s on software quality
gives a succinct exposition of software quality. They
discussed five views of quality in a comprehensive
manner 18 shown m Fig. 1. The concept of softwarre
quality and the efforts to understand it in terms of
measurable quantities date back to the mid-1970s.
McCall et al. (1977) were the first to study the concept of
software quality in terms of quality factors and quality
criteria. A quality factor represents
characteristic of a system. Some examples of high-level
quality factors are correctness, reliability, effeciency,
testability, maintainability and reusabulity.

a behavioral

LITERATURE REVIEW

Cai (1998) applied new static model for estimating the
number of remaiing defects and use a set of real data to
test the new model. The new model coincides with the

Corresponding Author: K. Karnavel, Department of Industrial Engineering, Anna University, Chennai-25, India

Asian J. Inform. Technol, 13 (10): 657-660, 2014

Fig. 1: Views of quality

Mills Model in a particular case and shows its attraction
n its applicability to a broader scope of circumstances.
They given a practical example shows that the new model
can offer good estimates for the number of remamng
software defects. Tt is also applicable to statistical
problems other than software reliability modeling. They
are not give systematic review and doesn’t seem
applicable to estimating the number of remaining defects.

Chulani (1999) applied COCQUALMO Model for
predicts the defect density of the software under
development where defects conceptually flow into a
helding tank through various defect introduction pipes
and are removed through various defect removal pipes. In
this model it is difficult to increase the quality without
increasing the cost and time. They are injecting the
defects and removing the defects but it involves more
computation time, cost and man power to predict the
residual defects.

Biffl (2003) compared and investigated the
performance of objective and subjective defect content
estimation techniques. For validation of the techniques
they conducted a controlled experiment with 31 inspection
teams with consisted of 4-6 persons. They reported on
data from an experument with software engineering defect
data on the number of (major) defects in a requirement
document. They are used the relative error, a confidence
interval and the correctness for deciding on a reinspection
as main evaluation criteria but it has to provid major
defect in the requirement document and less number of
ACCUracy.

Westland (2004) analysed that the short software
development life cycles appear to favor higher rates of

It envisages quality as something that can
be recognized but is difficult to define

It perceives quality as fitness for purpose

658

Here quality is understood as conformance
to the specifications
In this case, quality is viewed as tied to the
inherent characteristics of the project

Quality, in this perspective, depends on the

amount a customer is willing to pay for it

detection but that for any reasonable development cycle,
most errors will go uncorrected. Short life cycles are likely
to force constrained software development cycles and are
likely to exacerabate the risk from post-release defects. It
has to defined uncorrected defects become exponentially
more costly in each phase.

Chun (2006) applied a new method (Capture-
Recapture Model) that estimates the number of
undetected errors in complex software design documents.
This 1dea use the correlation matrix of multiple mspectors
and to formulate the estimation problem as a goal
program. Capture-Recapture Model mtially used by
biologists to estimate the size of wildlife populations
has been widely used to estimate the number of software
design errors. Tt shows the undetected errors will be
present and leads to software fault or failure.

Turakhia et al. (2006) used statistical testing to
1solate the embedded outlier population, test conditions
and test application support for the statistical-testing
framework and the data modeling for identifying the
outliers. The identification of outliers that correlate to
latnet defects critically depends on the choice of test
reponse and the statistical model’s effectiveness in
estimating the healthy-die response but it provides low
efficiency, less reliability and cost is very high.

Jacobs et al. (2007) studied on Defect Injection (DI)
and Defect Detection (DD) influencing factors and their
grouping, resulting for use in devlopment projects. To
decrease the number of injected defects in a development
project, the DI factors could be used as areas of attention.
While quality of documentation is expected to be poor
and lack of product of quality.

Asian J. Inform. Technol, 13 (10): 657-660, 2014

Ravishanker et al. (2008) applied non-homogeneous
Poisson Process Model and multivariate model that apply
Markov switching to characterize the software defect
disovery process. While the process remains complex and
increased 1 failure rate also.

Zuo et al. (2009) studied quality prediction model for
there have been number of faults is negatively correlated
with the workload deviation which indicates that quality
is decreasing due to unsatisfied workload budget.
Although, the problems occurred in testing phase for
overheads workload and decrease in quality of the
product.

Quah (2009) studied defect tracking is used as a
Proxy Method to predict software readiness. They
developed defect predictive model is divided into three
parts: Prediction model for presentation, Logic Tire
Prediction Model for business tier and Prediction Model
for data access tier. While evaulating the software
readiness is very complex.

Catal (2011) studied software engineering discipline
contains several prediction approaches such as test
effort prediction, correction cost prediction, fault
prediction, reusability prediction, security prediction,
effort prediction and quality prediction. They investigated
90 software fault prediction papers published between
year 1990 and year 2009. They given roadmap for research
scholars in area of software fault prediction.

A detailed literature study was conducted in the area
of software quality and in particular software testing. The
abstract of the literature papers was presented above. The
following conclusion can be drawn from the review of
literature:

¢ None of the alternatives is better than the others in
all aspects

s The waterfall and COQUALMO Models are not
produce satisfactory quality

» The strength and weakness of other techmques are
complementary

LIMITATION OF COQUALMO

» The effort to fix the defect mtroduced and removed 1s
not quantified directly by the model

» COQUALMO does not associate time aspect to the
defect removal and fixing process

» Defects are not given weights and classifications in
terms of software artifact they originated from

NEW MODEL DEVELOPMENT

The STDCM has been developed based on the two
important models namely, Waterfall and COQUATLMO
(Chulani, 1999). The integration of these models were
carried out in a stage wise manner. The validation
process 1s also considered in the integration of these
meodel in stage by stage wise fashnon The framework of
these model is shown in Fig 2. The following steps are
considered for the construction of STDCM:

» The first phase of the model 1s requirement analysis
the customer requirement of the project are collected
m the requirements phase of STDCM. The
requirements are analyzed using SoftQFD(SQFD), in
which House of Quality (HoQ) matrix was used to
validate the requirements of the given project

Customer needs]

}

SQFD Requi t I 7y
| equirements I RS
[[Reqts.Fix]
Design review | Design I‘ v
Reqts.Fix
{1 D igr Fi
esign Fix
—.|SWFMEA Coding |:‘:::::::::::::; #
T Reqts.Fix
1L e | e
| Testing |‘ ________________ Desng_n Fix
D | Coding Fix
Size estimation | S/W product | S/W residual
(COCOMO/FPA) J\,L Requil:Ements
Design
| Deployment | C0d+ing

| Maintenance |

Fig. 2: Framework of Software Testing Defect Corrective Model (STDCM), SWFMEA = Software Failure Mode
Effect Analysis; SQFD = Software Quality Function Deployment; SRS = System Requirements Specifications;

DFD = Data Flow Diagram,;
reviews; —— Represents inputs and outputs

—p Represents flow of process; —# Represents validation tools and

659

Asian J. Inform. Technol, 13 (10): 657-660, 2014

The second phase of the model is design: here the
output of this phase 13 Data Flow Diagram (DFD).
The input of this phase is designed review corrected
DFD will be obtained

The third phase of the model 1s coding: to estimate
the lines of code using COCOMO/FPA. The
SWFMEA is validated using statistical tools

The fourth phase of the model 15 testing: the mput 1s
output of the SWFMEA and test cases

CONCLUSION

This study presents a new model namely STDCM for
finding residual defects in developing software projects
in IT industry. In this study or review is presented,
analysis shows that the COQUALMO and WATERFALL
Model based method doesn’'t seem applicable to
estimating the number of remaining residual defects. But
the new static model for estimating the number of
remainng residual defects in the software product.
STDCM achieves the maximum customer satisfaction,
since peer reviews have been conducted to find the bug
1n earlier for improving the quality and produces maximum
quality of the software without increasing the cost and
time and there is a chance for getting very less residual
errors at the testing stage. The construction shows the
application of peer-review process and the size estimation
computation of COCOMO/FPA.

ACKNOWLEDGEMENTS

This research was supported from many people,
including R&D Lab, Department of Industrial Engineering,
the family members and our friends and colleagues. First,
T would like to thank the supervisor who gave us much
professional guidance and patiently answered the various
queries and the Industrial Engineering Department
professors, research scholars and PG students gave us
numerous suggestions to improve the presentation; we
thank him for all his effort and encouragement.

REFERENCES

Baffl, 3., 2003. Evaluating defect estimation models with
major defects. I. Syst. Software, 65: 13-29.

660

Cai, K.Y., 1998. On estimating the number of defects
remaining in software. I. Syst. Software, 40: 93-114.

Catal, C., 2011. Software fault prediction: A literature
review and current trends. Hxpert Syst. Appl,
38: 4626-4636.

Chulani, S., 1999. Constructive quality modeling for defect
density prediction: COQUALMO. IBM Research,
Center for Software Engineering, http://fwww.
chillarege.com/fastabstracts/issre99/99120.pdf.

Chun, Y.H., 2006, Estimating the number of undetected
software errors via the correlated capture-recapture
model. Eur. T. Oper. Res., 175: 1180-1192.

Tacobs, J., I. Van Moll, R. Kusters, J. Trienekens and
A. Brombacher, 2007. Identification of factors
that influence defect injection and detection in
development of software intensive products. Inform.
Software Technol., 49: 774-789.

Kitchenham, B. and S.1.. Pfleeger, 1996. Software quality:
The elusive target. IEEE Software, 13: 12-21.

MeceCall, AJ., PK. Richards and G.F. Walters, 1977.
Factors m software quality. Technical Report No.
RADC-TR-77-369, U.S. Department of Commerce,
Washington, DC., USA.

Quah, T.S., 2009. Estimating software readiness using
predictive models. Inform. Sci., 179: 430-445.

Ravishanker, N., 7. Liuand B.K. Ray, 2008. NHPP models
with Markov switching for software reliability.
Comput. Stat. Data Anal., 52: 3988-3999.

Schach, S., 1990. Software Engineermg. Vanderbilt
University Press, USA.

Turakhia, R.P., W.R. Daasch, J. Lurkins and B. Benware,
2006. Changing test and data modeling requirements
for screening latent defects as statistical outliers.
TEEE Des. Test Comput., 23: 100-109.

Westland, J.C., 2004. The cost behavior of software
defects. Dec. Support Syst., 37: 229-238.

Zuo, X, Y. Liang and H. Lei, 2009. Study on the
quality prediction model of software development.
Proceedings of the International Conference on
E-Business and Information System Security,
May 23-24, 2009, Wuhan, China, pp: 1-4.

	657-660_Page_1
	657-660_Page_2
	657-660_Page_3
	657-660_Page_4

