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Abstract: Gene selection is very important in classification of cancer using parallel computing in the analysis
of gene expression relationship. The high performance parallel computing 1s used for gene expression analysis
and finding the thousands of genes simultaneously. DNA microarrays are used to measure the expression levels
of thousands of genes simultaneously. The classification and validation of molecular biomarkers for cancer
diagnosis is an important problem in cancer genomics. The microarray data analysis is very much important to
extract biologically useful data from the huge amount of expression data to know the current state of the cell.
Most cellular processes are regulated by changes in gene expression. This is a great challenge for
computational biologists who see in this new technology the opportunity to discover interactions between
genes. In this study, we propose a Cooperative Parallel Multi-Objective Genetic algorithm for Gene Feature
Selection. We have implemented CPMGA for gene feature selection to classify the breast cancer data sets.
More mportantly, the method can exhibit the inherent classification difficulty with respect to different gene
expression datasets, mdicating the inherent biology of specific cancers.
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model, parallel GA

INTRODUCTION

DNA microarray experiments play a very important
role in cancer classification and prediction. The microarray
technology has been used mn many cancer researches.
The analysis of the large volumes of data generated under
different experimental conditions is important and it
requires advanced knowledge discovery methods. Many
data mming techniques (Witten and Frank, 2005) have
been proposed to analyze microarray data (Wang and
Gotoh, 2010). Feature Selection (F3) 1s a very wnportant
task in data mming for cancer classification with the goal
of identifymng very important features subsets m a
microarray data. Tt is one of the most key problems in the
field of machine learning. The classification and validation
of molecular biomarkers for cancer diagnosis is an
important problem in cancer genomics. The selection of
candidate genes is very crucial to identify accurately the
origin of cancer, its treatment and diagnosis too. With, the
appearance and fast development of DNA microarray

technologies, making gene expression profiles for
different cancer types has already become a hopeful
means for cancer classification.

Genetic Algorithms (GAs) (Goldberg and Holland,
1988), a form of mductive leaming strategies are adaptive
search techniques initially introduced by Holland. Genetic
algorithms are inspired from Darwin’s theory of evolution.
By simulating nature evolution and emulating biological
selection and reproduction techmques, the GA can solve
complex problems in a strong search domam. The
algorithm starts with a set of randomly generated
solutions called population. The population size remains
constant throughout the genetic algorithm. At each
iteration the populations are evaluated based on their
fitness quality with respect to the given application
domain to form new solutions called offspring which
retaing many features of their parents. Offsprings are
formed by two main Genetic algorithm operators such as
crossover and mutation. Crossover operates by randomly
selecting a point in the two selected parent gene
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structures and exchanging the remaining segments of the
parents to create new offspring. Therefore, crossover
combines the features of two mdividuals to create
two similar offsprings. Mutation operates by randomly
changing one or more components of a selected
individual. Tt acts as a population perturbation operator
and 18 a means for mserting new information nto the
population. This operator prevents any stagnation that
might occur during the search process.

In this proposed research, CPMOGA feature
selecion 13 implemented based on Multi-Objective
Genetic algorithm. CPMOGA uses a different operator
called multi-objective operator. Multi-objective aspect is
defined to find the pareto optimal solutions for ranking.
Since, the search space is large and requires a good
diversity, Island model has been proposed. Finally, the
cooperative parallel GA has been implemented by using
parallelization tools (Umbarkar and Joshi, 2013) (Open
MP).

Literature review: Pati et al. (2013) has explained a
novel feature selection method which was based on
Multi-Objective Genetic algorithm using rough set theory.
This method proposed to choose important mformative
gene set which classify the cancer dataset very efficiently.
This method has used two fitness functions individually
based on the concepts of strong mathematics such as
rough set theory and probability theory. The lack of
diversity of population is overcome by jumping gene
mutation. The only drawback of this method is that the
population size can be set within the range 100-1000 only.

Karegowda ef al. (2010) has proposed a wrapper
approach with Genetic algorithm for generation of
subset of attributes with different classifiers such as naive
bayes, bayes networks, C4.5 and radial basis finctions.
The above classifiers are experimented on the diabetes
datasets, breast cancer datasets, heart statlog and
wisconsin breast cancer. The main disadvantage of this
approach 1s that the computing time 1s very high for the
large datasets.

Liu et al. (2009) has proposed a new feature selection
method called recursive feature addition method on
microarray based breast cancer data. The RFA gene
feature selection method provides good classification
accuracy than the other methods. In this method, serial
programming is used for classification which slows down
the computational speed.

MATERIALS AND METHODS

Genetic algorithm operators for generating population
using Island model: The proposed GA based cooperative
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parallel multi-objective GA is implemented for selecting
the most important genes from the breast cancer data set.
The population generation is defined in GA by two
(Khabzaoui et al, 2006) crossover and
mutation. The cross over operator has two versions
Crossover by exchanging values crossover by inserting
values. The crossover operator mixes the features of

operators

two rules by the combmation of their attributes. In the
proposed research, crossover operators can be defined
as:

Crossover by exchanging values: If two rules X and Y
have one or several common attribute(s) in their C parts,
one common aftribute is randomly selected. The value
of the selected attribute in X is exchanged with its
counterpart in Y (Fig. 1).

Crossover by inserting values: Conversely, if X and Y
have no common attribute, one term is randomly selected
in the C part of X and inserted m Y with a probability
inversely proportional to the length of Y. The related
operation has performed to msert one term of Y in X
(Fig. 2).

Mutation 1s a genetic algorithm operator. This
operator changes at random the value of a gene in a newly
created individual. The population mutation rate used is
very small, in the order of one mutation per thousand
genes transfer. Thus, mutation is considered to be a
secondary mechanism of genetic algorithms. Tt is still used
to introduce new solutions into the population and to
protect the algorithm from premature loss of important
genetic material by remntroduction of genes. Genetic
algorithm has four mutation operators value mutation
operator attribute mutation insertion operator delete
operator. In this study, we proposed adaptive strategy for
calculating the rate of application of each mutation. We
compute the new rate of mutation by calculating the
progress of the jth application of mutation M; for an
individual ind mutated into an individual mut as follows:

Progress; (M, ) = Max{fitness{ind, fitness(mut)}- fimess(ind))
(1)

Then, for each mutation operator M, assume

Nb_mut(M; ) applications of the mutation are done during
a given generation (j = 1, ..., Nb_mut(M;)). Then, we can
compute the profit of a mutation M,

2] Progress; (M, }/Nb_mut(M, )

21 ( Zj Progress,(M;)/Nb _ mut(M, ))
(2

Profit(M, )=
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Fig. 1. Crossover by exchanging value
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Fig. 2: Crossover by insertion of attributes

We set a minimum rate & and a global mutation rate
P aaien LOr N mutation operators. The new mutation ratio
for each M, 1s calculated using Eq. 3 (Hong et @l., 2000):

p(M1) = PrOﬁt(Mi )X(pmutation _N X 8) + 8 (3)

The sum of all the mutations 1s equal to the global
rate of mutation P 1he initial rate of application of
each mutation operator 18 set to P/ IN-

Multi-Objective Genetic algorithm: In the Smgle
Objective Genetic algorithm , the classification accuracy
is low and the time taken is very high using serial
computing. To overcome this problem researchers
proposed cooperative parallel Multi-Objective Genetic
algorithm that has been implemented in parallel
computing. The population generation 1s one of basic
step in Multi-Objective Genetic algorithm applied here
for dimension reduction. The population generation is
derived by using the multiobjective optimization problem
(Van Veldhuizen and Lamont, 2000). In a multi-objective
optimization, all the solutions are best compromise. The
best solutions encountered over generations are filed mto
a secondary population called the Pareto archive and the
solutions can be selected from the Pareto archive during
the production process. This method is called as elitism.
The offspring solutions replace their parents according
to the replacement strategy. Figure 3 presents the
Multi-Objective Genetic algorithm scheme.

Cooperative parallel Multi-Objective Genetic algorithm:
The population generation is one of the basic steps
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Fig. 3: A multi-objective GA

in cooperative Multi-Objective Genetic algorithm. The
Parallel Genetic algorithm (Konfrst, 2004) has been
classified into three mamn models: global, fme cellular
and island. The global model uses parallelism to
speed up the sequential GA. This model uses a
global shared population and the fitness evaluation 1s
done on different processors. The cellular model
seeks to exploit the fine-gained, massively parallel
architectures. The population is separated into a large
number of very small sub-populations which are
maintained by different processors. In the 1sland model,
the population is divided into a few large independent
subpopulations called islands. Hach processor evolves
their population using a parallel GA. For each 1sland,
some solutions rarely migrate to another island. We
choose the island model for Parallel CPMOGA.

Island model: The island model is implemented m parallel
programming and many islands are commected by using
ring topology (Fig. 4). This model typically runs on a
parallel multi-objective GA. In this, each processor 1s
called an island with independent populations and
Pareto archuves (Fig. 5). Each GA starts with its
proper parameters such as population, parameters of
GA. Periodically, each Tsland sends some solutions
from its Pareto archive randomly selected to the
neighboring Island. The Island model has
steps:

four

Each Island model creates its population

Each model develops its population for a global
number of generations and updates its archives for
every generation

Each 1sland sends some solutions of its Pareto
archive to the neighboring 1sland according to the
migration policy

Fmally, the 1sland receives all the migrating solutions
and replaces its worst solutions by those immigrants
according to the ranking
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At the end, a specific Island waits for all the others to
finish their execution and collects all the final Pareto
archives to create the global Pareto archuve. This
island model has been implemented by using
parallelization tools like Open MPI (August ef al., 2010;
Quinm, 2004).

Code design and selecting best parameters: In the code
design the default values used are for selecting the best
parameters.

+  Population size is 1000

*  Selection in population 1s 446 (400)

*  Global mutation rate 1s 0.5

*  Crossover rate 1s 0.8

+  Selection i Pareto archive (elitism) 1s 0.5
*  Mimmal number of generations are 500

The stopping criterion used is the nonamelioration.
Once the minimal number of generations has been
overpassed and after taking the best solution for all 10
generations, the iteration stops. For further improving
the computing time, we have used clustered machine
comprised of six workstations with Intel Core 15 processor

Migration /\ /)
GA G GA
K

AN
D, ()

(2

Fig. 4: Tsland model ring topology connection

Miprate
GA GA
Generation Generation
upda_t)e Archive] updg)te (Archive?
Population 1 Population 1
GA

Every X generations

Population 1

Fig. 5: Island model

with NVIDIA Graphics processor (Qiso et al., 2011) and
1 GB mam memory. The study shows the pseudo code for
the parallel Tsland model:

Island model pseudo code:

1. Island Model (A, n, p)

2. Begin

3. Concurrently for each of the i? 1 to n subpopulations
initialize (P, 1)

4. For each no of generation? 1 to A do

5. Concurrently for each of the i? 1 to n subpopulations do

6. Sequential GA(P, G)

7. 0d;

8. Fori?1ltondo

9. For each neighbour j of i

10. Migration (P;, P;).

11. Assimilate (P);

12, od

13. od

14. Problem solution = best individual of all subpopulations;

15. End

The sequential GA has implemented using the
following pseudo code:

Sequential GA pseudo code:
. Sequential GA (P, P)

BRegin

For generation? 1 to G, do
Pnew? P?

For offspring ? 1 to Max_offspring do
P, ? selection(P)

P;? selection(P)

Pnew = pnew? Crossover (P,, Pp)
9. od

10. Fitness_calculation (P,7P,,.)

11. Py Reduction (P7P,.,)

12, Mutation (Po);

13.  Fitness calculation (Py)

14. End

L NS

ROC curve of breast cancer data sets for data mining
classifiers (Fig. 6-11).
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Fig. 6: ROC analysis for SVM classifier; classifier: SVM;
target class: relapse; costs: FP = 500, FN = 500;
prior target class probability: 43%
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Fig. 7. ROC analyses for CN2 classifier; classifier: CN2
rules; target class: relapse; costs: FP = 500, FN =
500; prior target class probability: 43%
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Fig. 8: ROC analysis for kNN classifier; classifier: kNN,
target class: relapse; costs: FP = 500, FN = 500;
prior target class probability: 43%
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Fig. 9 ROC analysis for classification tree; classifier:
tree; target class: yes; costs: FP = 500, FN = 500;
prior target class probability: 45%

Fig. 10

765

1.0q
0.9
0.8
0.7 1
0.6
0.5
0.4
0.3 1
0.2
0.1
- _ O O OO OO OO 0O
0.0 0.1 02 03 04 05 0.6 0.7 0.8 09 1.0
FP rate (1-specificity)

Predicted class: relapse

0.4

TP rate (sensitivity)

ROC analysis for ITB rules classifier; classifier:
intractive tree builder; target class: relapse;
costs: FP = 500, FN = 500, prior target class
probability: 43%
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Fig. 11: ROC analysis for random forest classifier;
classifier: rendom forest; target class: relapse;
costs: FP = 500, FN = 500, prior target class

probability: 43%
RESULTS AND DISCUSSION

The proposed method has been implemented in
Multicore processor environment. The measured run
times for 4, 8, 16, 32 processors are shown in the Table 1.
The best features have been taken from CPMOGA gene
Feature Selection Method and compared with the existing
feature selection methods using the orange data mining
tools (http://orange biolab.si/docs/latest/tutorial rst/)
using python scripting language.

We carried out this experiment on two publicly
available microarray breast cancer datasets (Mendes,
2011) available at Kent Ridge Bio-medical Data Set
Repository (http://datam.12r.a-star.edu.sg/datasets/krbd/).
The existing feature selection methods are applied
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for this breast cancer data sets and classification accuracy
are measured using Orange data mimng and machine
Learning tool. The feature selection methods (Hassanien,
2003; Polat et af., 2005) hke Novel Hybrid, Wrapper
approach, Consistency Subset Selection (CON) (Yu and
Liu, 2004), Correlated Feature Selection (CFS) (Hall,
1999), Single Objective Genetic Algorithm (SOGA)
(Goldberg and Holland, 1988), Multi-Objective GA
(MOGA) and the proposed Cooperative Parallel Multi
Objective GA (CPMOGA) are applied on breast cancer
data sets. Tt is then measured by various classification
methods like random forest, K-NN, classification tree,
SVM, CN2 rules and mteractive tree builder in orange tool.
The proposed CPMOGA Feature Selection Method
provides better classification accuracy than the other

Feature Selection algorithm and the computing time is
very less than the other methods. Table 2 shows the
classification accuracy of wvarious methods. The
Cross-fold validation measuring  the
classification accuracy in terms of time which is available

is used for
at Orange tool and CPMOGA 15 unplemented by us. From
Table 2 researchers observe that the proposed CPMOGA
method is better than other methods in terms of time
consuming, feature selection and classification accuracy.
The executing system consists of core 15 processor with
NVIDIA Graphics processor runming at 4 GHz clock
frequency.

Some statistical measurements like true positive rate,
false positive rate of the classifiers are calculated using
Eq. 4 and 5:

TP TP

Table 1: Measured run time TPR = ? :m (4)

No. of processors Run time (h)

4 3.50

8 1.78

16 0.90 FPR:E __ P (5)

32 0.45 N (P+TN)

Table 2: Classification accuracy (%) of breast cancer data set sub-types

Data mining classifier

Breast cancer data set sub-types Feature selection methods SVM ITB KNN CT CN2 RF

Normal breast like Wrapper Approcah 62.0 54.0 58.0 54.0 45.0 51
CON 61.0 53.0 59.0 55.0 48.0 53
CFS 60.0 53.0 60.0 57.0 48.0 51
SOGA 62.0 51.0 61.0 56.0 48.0 50
MOGA 69.0 59.0 63.0 55.0 49.0 48
CPMOGA 76.0 72.0 720 78.0 50.5 54
MNovel Hybrid 65.0 55.0 65.0 89.0 50.0 51

BRasal Wrapper Approcah 62.0 52.0 55.0 53.0 43.0 50
CON 60.0 52.0 53.0 53.0 48.0 53
CFS 60.0 53.0 60.0 57.0 48.0 51
SOGA 69.0 65.0 67.0 58.0 54.0 66
MOGA 72.0 74.0 75.0 71.0 64.0 68
CPMOGA 73.0 74.5 T6.0 76.0 69.0 72
MNovel Hybrid 61.0 61.0 69.0 71.0 64.0 68

Luminal A Wrapper Approcah 64.0 65.0 61.0 68.0 46.0 56
CON 69.0 66.0 61.0 53.0 46.0 57
CFS 69.0 65.0 67.0 58.0 54.0 66
SOGA 73.0 67.0 67.0 65.0 56.0 66
MOGA 76.0 73.0 71.0 73.0 55.0 57
CPMOGA 76.5 73.5 T2.0 76.0 67.0 68
MNovel Hybrid 74.0 75.0 T4.0 73.0 63.0 6l

Lurminal B Wrapper Approcah 74.0 76.0 73.0 72.0 56.0 59
CON 73.0 74.0 720 70.0 57.0 55
CFS 70.0 72.0 74.0 70.0 54.0 51
SOGA 68.0 69.0 67.0 68.0 52.0 57
MOGA 72.0 73.0 T0.0 68.0 66.0 67
CPMOGA 74.0 75.0 71.0 73.0 68.0 70
Novel Hybrid 69.0 70.0 70.0 71.0 65.0 65

HER2+/ER Wrapper Approcah 65.0 66.0 63.0 53.0 51.0 59
CON 63.0 64.0 64.0 55.0 55.0 57
CFS 64.0 65.0 66.0 56.0 57.0 59
SOGA 67.0 70.0 71.0 69.0 58.0 6l
MOGA 70.0 71.0 T2.0 67.0 59.0 62
CPMOGA 73.0 74.0 735 70.5 61.0 62
Novel Hybrid 70.0 71.0 68.0 69.0 58.0 59
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Fig. 12: Proposed ROC for SVM, classifier: SVM; target
class: relapse; costs: FP = 500, FN = 500, prior
target class probability: 53%
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Fig. 13: Proposed ROC for RF; classifier: random forest;
target class: relapse; costs: FP = 500, FN = 500;
prior target class probability: 53%
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Fig. 14: Proposed ROC for kNN, classifier: kNN, target
class: relapse; costs: FP = 500, FN = 500, prior
target class probability: 53%
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Fig. 15: Proposed ROC for CT; classifier: classification
tree; target class: relapse; costs: FP = 500, FN =
500; prior target class probability: 53%
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Fig. 16: Proposed ROC for ITB; classifier: inter active
tree builder; Target class: relapse; costs:
FP = 500, FN = 500; prior target class probability:

53%
Where:
TP = Positive object classified as positive
FP = Positive object classified as negative
TN = Negative object classified as negative
FN = Negative object classified as positive

The ROC curves visualized by orange data mining
tool for the existing feature selection methods for
different It the
performance of the different classifier. The proposed
ROC cwve 1s shown m Fig. 12-17. From the graph,
we observed that the true positive better
than the existing methods. The proposed method curves

classifiers. shows classification

rate  1s
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Fig. 17: Proposed ROC for CN2; classifier: CN2; target
class: relapse; costs: FP = 500, FN = 500; prior
target class probability: 53%

indicates that the best features are taken and provides
accurate classification performance on the breast cancer
data set.

CONCLUSION

In the above research, the cooperative parallel
Multi-Objective Genetic algorithm has been implemented
and best features are selected in short time. The gene
feature selection is very important in cancer classification.
This method uses the island model for generating the best
population. The multiple islands are implemented n
parallel which has substantially reduced the execution
time in the process of best feature selection. In this
research, standard microarray data sets are taken from
kent ridge bio-medical data set repository. In future real
time data from breast cancer patients has to be taken. The
classification accuracy should also be clinically verified.
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