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Abstract: The All Unidirectional Error Detection (AUED) codes are among the ways of guarding against
erroneous correction and a t-Error Correction (EC)/All Unidirectional Error Detection (AUED) code can be
constructed by appending a single checlk symbol (P) to a linear t-EC code to achieve the AUED property.
Whenever, a t-EC/AUED code is used to encode information in a transmission side such information need to
be decoded at the receiving side. Methods and technicques proposed in literature for constructing t-EC/ATUED
codes are either come with no Decoding algorithm or if a decoding a algorithm is proposed, it lacks the
mathematical proof. This study adopts a decoding algorithm from the hiterature and derives a mathematical proof
for it. Simulation software is also developed and results for the encoding and decoding processes of four
different encoding methods are presented. Based on the mathematical proof and the simulation results obtained,
this study claims that the adopted algorithm 15 a Umversal Decoding algorithm.
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INTRODUCTION

Computers and digital systems are exposed to faults
which are many and varied. The faults lead to errors in
data which are usually categorized as follows:

¢ Symmetric (random) errors: when both (1-0) and
{(0-1) errors are likely to occur

*  Asymmetric errors: when either (1-0) or (0-1) errors
oceur with different probabilities

+  Umdirectional errors: when both types (1-0) and
(0-1) errors can occur but in a particular word all
errors are of one type

The statistics of errors are strongly dependent on the
way the data is organized. If the organization of a RAM
memory, for example, consists of several bits per clup, a
defect in a memory chip can affect several bits m the same
word. Similarly, a defect on a tape due to handling or the
presence of foreign particles usually effects one track,
however, it will cause possibly a large number of errors on
this track.

Early emror comrecting codes which were designed
under the assumption that errors are random may not be
entirely appropriate for errors which may occur in most
memory systems (Al-Am and Al-Shayea, 2010;
Naydenova and Klove, 2009). This fact has led to the
design of a class of codes which are capable of detecting

unidirectional errors. This category of errors is the
most probable to occur m digital systems and devices.
Among the allunidirectional error detection codes are the
m-out-of-n codes (Pradhan and Stiffler, 1980) and the
Berger codes (Pradhan, 1986). Unidirectional errors can
oceur in a large number compared to the imited number of
random errors likely to occur.

The theory of umdirectional error correcting/
detecting codes was presented by Bose and Rao (1982)
and since then binary t-EC/ATUED codes have been
extensively studied and many construction methods are
pro posed in literature. Tn general, a t+-EC/AUED code
can be constructed by appending a check symbol to
each word of linear binary t-EC code. An evaluation study
of the construction methods found by Nikolos et al
(1986) and Andrew (1988) is presented (Mohammed and
Al-Jobouri, 2015).

In line with the several number of proposed
construction techniques, there are few decoding
algorithms proposed. Most and probably all decoding
algorithms are proposed with no mathematical proofs
(Bose and Rao, 1982; BPruck and Blaum, 1992; Al-Bassam,
2000). On the other hand, other studies did not mention
about the decoding algorithm for ther proposed
construction methods.

In this study, the Decoding algorithm proposed by
Bose and Rao (1982) 1s adopted and a mathematical proof
for this algorithm is presented. This adopted algorithm is
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then applied to four construction methods. Two methods
are taken from Nikolas et al. (1986) and one 1s from
Andrew (1988) while the fourth 1s from Al-Bassam (2000).
Tn addition to the mathematical proof, a software program
is developed whose results supports to the mathematical
proof and demonstrates the performance of the decoding
algorithm. By this proof and its supportive software, this
study claims that the adopted decoding algorithm worled
as a Universal Decoding algorithm.

SOME DEFINITIONS AND NOTATIONS

The theory of control coding 15 concerned with
encoding and decoding of data and the mean of
inplementing them in hardware and software. Coding
theory is also concerned with n-bits words that are of the
form:

X=(a,a,,...a,) (1

where, a,, a,, ..., a, are symbol of a set 5. let q be the
nmumber of symbol that are contained in S. There are ¢
possible words of length n of total of g symbols. A code
C 1s defined to be a subset of all possible codewords. If
the set of symbol are elements of a finite field with q =2,
then binary codes will be constructed and these codes are
the most important, hence, they are considered in this
research. There are two main types of codes in common
use today block codes m which n 13 fixed and
conventional codes in which n is not fixed. Following are
some definitions which are related to codes:

Definition 1: The Hamming distance between two n bit
words ¥ and ¥ denoted d(v, W) is defined as the number
of places where they differ.

Definition 2: The weight w( ¥) of a word ¥ is the number
of non-zero digits in 1t. Linearity forms a common feature
for a large number of codes which are referred to as linear
codes (Lin and Costello, 2004). An (n, k) binary block
code C is called linear if its set of 2* n-tuples codewords
are a subset of all n-tuples over GF(2) and can be
expressed as a linear combination of a set of k basis
vectors. The following notations are used in this study
given X and Y as n-tuples over GF(2) then:

¢ d(X, Y)=Refers to the Hamming distance between X
and Y

+  N(X.Y) = Denotes the number of (1-0) crossovers
fromXtoY

* P = Denotes the appended check symbol to achieve
the AUED property

The Hamming distance can be expressed in terms of
crossovers as follows:

AL Y) =N Y+ N(Y, X (2)

A characterization of when a code is a t-EC/AUED is
known as per the following theorem:

Theorem: A code C i1s capable of correcting up to (t)
random errors and detects all unidirectional errors if:

both N(X, Y)zt+1and N(Y, X)=t+1
foral X, YeECand X#Y

3

A UNIVERSAL DECODING ALGORITHM

The decoding algorithm: The following decoding
algorithm is taken from Bose and Rao (1982). The steps of
thus algorithm which are shown in Fig. 1 are as:

Compute the syndrome of the received word X’

v

W2 =No. of errors corresponding to the
syndrome

v

No

Decode X’ to get X”

v

Compute P” for X”

W2+d(P*, P)<t

Yes

A 4

X’P” is the correct codeword

Fig. 1: Flow chart of the Umversal Decoding algorithm

Errors detected
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Step 1: Compute the syndrome of 30, let W2 be the
number of errors corresponding to the syndrome.

Step 2: If W2>t, then output errors detected and stop.

Step 3: Correct X using a Decoding algorithm to get 3{”
and compute P” for X"

Step 4: If W2+d(P°, P”)<t then X"P” is the correct
codeword, else output errors detected and stop.

The mathematical proof: Let [XP] be received as [X"P’]
where d(X, X*) =1, d(P, P") = 1,. Suppose X is correctable
and is corrected to X’ for which the corresponding
AUED check symbol 18 P”". Then if L, +1, <t [X"P”] = [XP]
and d([X"P7], [X°P D=t If 1 +1,>t and the errors are
unidirectional d([X”P”], [3 P’ ])=t+1.

Proof: Since, 1<t then X~ = X, it follows that P”
Therefore, d([X"P7], [X'P’]) = d([XP], [X°P’]) = |, +],=t.
There are two cases to consider:

Case 1: 1<t X’ 18 corrected to X Thus, X7 = Xand
P~ P. Therefore, d([X"P7], [X'P'] d([XP],
[X°P])=14,=t+1.

Case 2: 1,>t. X 18 erroneously corrected to X”. There are
three cases to consider:

Case 2a: W(X")>W(X), Since W(X")>W(X) then
N(X”, X)=N(X, X7) and since N(X”, XN, X7) =
d(X, X 22t+1, then N(X”, X)=t+1. Correction therefore,
requires that it is O-1 errors which are made in X. Also
N, XN, X™)<t. Since, the code 15 AUED then
N(X, X"HNP, P”)=t+1. But, since the errors are
unidirectional and only 0-1, then N(P°, P”)>2N(P, P7)
whence N([3CP’]), [X”, P"D=N(XP]), [X”, P"])=t+1 and
d([3°P’], [XP7 )=t

Case 2b: W(X")<W(X). The proof 1s similar to that of the
previous case (case 2a) with 1-0 errors in X occurring,.

Case 2¢: W(X™) = W(X). This case can not ocour since:
N, X7 =NX", X)=t+1.

Case study: Consider case 2a above and assume having
a codeword (X = 111010001 000000) from the (15.7) 2-EC
code and its AUED check symbol (P = 01010101). Thus
codeword represents an example calculated using one of
the methods taken from Nikolas et al. (1986) and studied
by Mohammed and Al-Jobouri (2015). Assume that
this codeword 1s received as (3CP° =111111111110000

789

11011111) after some 0-1 errors in X and P. The word will
be erroneously corrected to X7 = 111 111110110000
with the assumption that 1, _ . Its AUED check symbol is
P =10101010. In this case:

N(X”, X)zt+l = 6
N(X, X7 )N, X<t =1
N(X, X7HNP, P)ot+] = 5

Since, the errors in P are unidirectional only, then
NP, P) = N(P, P”) = 4. Whence N([XP], [X"P"]) =
NXP’L, [XP"D=t+] =5 and d([X'P’], IP7)=t+] = 6.
This corresponds to the detection of the umdirectional
eITOrS.

RESULTS

Another study 1s presented here to
demonstrate how the simulation software 15 working in
order to process the encoding and decoding of
different t-EC/AUED codes. A (16.7) code with even
weight that is taken from (Andrew, 1988) and studied in
(Mohammed and Al-Tobouri, 2015) is considered to
explain the details of such processes. Consider a 7 bits

message m = (1010010). This message is encoded by

casec

being multiplied by the following generator matrix G

[1110100010000001
0111010001000001
0011101000100001
0001110100010001
0000111010001001
0000011101000101
0000001110100011 |

The result of (m=G") 1s a 16 bit codeword X =
1101010111100101. A check symbol P 1s then calculated
and appended to X such that the transmitted codeword
XP=1101010111100101 110001. Now consider that the
received word 1s X'P” = 1101000011100101 110001. The
(n-k) bits syndrome of X’ 1s calculated, S = 100101010. By
referring to a table of the correctable error patterns (e) and
their corresponding syndromes, it is found that the
correctable error pattern corresponding to S = 100101010
15 e = 0000010100000000. Note that the table which we
have to refer to has:

Hf}[fﬁ - 137 entries
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Table 1: Bimulation results of encoding and decoding processes of a t-EC/ATED code based on an even weight (16, 7) 2-EC code

7 bits Transmitted Recewed Correspending Corrected Witd

message codeword XP codeweord XCP” Syndrorme 8 error pattern (e) W2 word 37 = - P (P, P") Decoding Result
1000011 1110110001100111 110001 111011000000111 110001 1011100 0000000001100000 2 1110110001100111 110001 2 Errors corrected
1001000 1111010110010000 100011 1011010110010000 100000 10000001 0100000000000000 2 1111010110010000 100011 3 Errors detected

1001 000111010110010 100011 1111110101100101 001111 110000001 - - - - Non correctable word
1010111 1101100011001111 110001 1101110011001111 010001 10001001 0000010000000000 1 1101100011001111 110001 2 Errors corrected
1010111 1101100011001111 110001 1101000011001111 110001 100010001 0000100000000000 1 1101100011001111 110001 1 Errors corrected
1010110 1101101101101100 110001 0001101101100111 010101 110001111 - - - - - Non-cotrectable word
1010001 1101000100000011 000111 1011010101001010 101001 101100 0001000000001000 2 1010010101000010 111 & Errors detected
1011110 1100011001111101 110001 1100001001110101 110011 0100001000 0000010000001000 2 1100011001111101 110001 3 Errors detected

Syndromes are calculated using the equation S = e H'
where H 1s the perity check matrix. The value of the above
error pattern indicates that the two random errors that
have occurred m X are at the sixth and eighth bits.
Therefore, set W2 = 2. Because W2<t the errors are
correctable and the corrected codeword X" = X'-e =
1101010111100101 and3X”P”=1101010111100101 110001,

More examples from the same code are tabulated and
shown in Table 1. In Table 1, different scenarios of
possible errors are demonstrated. To suit the space
available and for data be to consistent, the table has been
tilted to the left.

CONCLUSION

Among the ways of guarding agamst erroneous
correction of possible errors n nformation being handled
in computers and digital systems 1s by the use of codes
which detect all unidirectional errors. It’s a common fact
that whenever information is encoded they need to be
decoded. In literature, a researcher can find several
methods and techniques proposed for constructing
t-EC/AUED codes. Most of the those methods were
proposed without mentioning how to decode the
resulting decoding algorithms
proposed with some of the others. In the later, there were
no mathematical proofs of the proposed decoding
algorithms. This study adopts decoding
algorithms found in literature and a mathematical proof
was derived. Four different construction (encoding)
methods are also adopted and simulation results for the
encoding and decoding processes are presented. The
simulation results are obtained from the run of software
that is developed for this purpose.

The Adopted Decoding algorithm is based on
the basic theory of unidirectional error detection and

codes while were

one the

790

correction and after being proved mathematically and by
developing the simulation software, this study claims that
thus algorithm 1s a Universal Decoding algorithm.
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