Asian Journal of Information Technology 13 (2): 53-57, 2014

ISSN: 1682-3915
© Medwell Journals, 2014

A Comparative Study of Online Joining Approaches
Based on Memory Flushing Patterns

Raksha Chauhan and Pratik A. Patel
Department of Computer Science,
Parul Institute of Technology, Vadodara (Gujarat), India

Abstract: Traditional query processors generate full, accurate query results, either m batch or in pipelined
fashion. Researchers reviewed that this strict model 1s too rigid for queries over distributed data sources. For
executing such query, space is required in main memeory to accommodate the data for query processing. When
main memory gets full then some data must be moved to disk for finther processing as part of flushing. An
optimal strategy should be used to remove the victim data from memory to the disk. Victim data must be
selected on the basis of its contribution in future query processing. In this study various join algorithms and
flushing techmques used in online environment is reviewed.

Key words: Processors, data, main memory, optimal strategy, flushing

INTRODUCTION

An important line of research in adaptive query
processing has been toward developing join algorithms
that can produce tuples “online” from streaming, partially
available input relations or while waiting for one or more
inputs (Dittrich et al., 2002; Levandoslki et al, 2011;
Ives et al, 1999, Wilschut and Apers, 1993). Such
non-blocking jomn behaviour canimprove pipelining by
smoothing or “masking” varying data arrival rates and can
generate join results with high rates thus, improving
performance in a variety of query processing scenarios in
data-integration, online aggregation and approximate
query answering system. Traditional join algorithms are
designed with the implicit assumption that all input data
are available earlier and then to process. To process these
data streams there are some issues: First issue is that
there is requirement of non-blocking join algorithms to
process these streams to get first result as early as
possible in spite of traditional blocking join algorithms
which requires all the input data before hand for
processing. Second 1ssue 1s there 1s requirement of
optimal flushing policy which flushes in memory data to
disk when main memory becomes full and also makes
room for new incoming data to get processed. Various
algorithms are designed to resolve these 1ssues. There are
three basic join algorithms: hash based join, sort merge
based jom, nested loop based join algorithm. Here,
researchers have carried out the study for X-Join, Hash
Merge Join (HMT), Rate based Progressive Join (RPJT) and
Adaptive Global Flush algorithm (AGF) which are used in
internet environment.

EXISTING RESEARCH

Researchers have studied some of the related
research for the online joining environment on different
factors. Existing research on adaptive join techniques can
be classified in two groups: hash based (Dittrich et al.,
2002; Mokbel et al., 2004) and sort based (Urhan and
Franklin, 2000).

X-Join: Examples of hash-based algorithms include DPHT
and X-Join, the first of a new generation of adaptive
non-blocking join algorithms to be proposed. X-Toin was
inspired by Symmetric Hash Join (SHT) (Mokbel et al.,
2004) which represented the first step toward avoiding
the blocking behavior of the traditional hash-based
algorithms. It is a non-blocking join operator, called
H-Toin (Mokbel et al., 2004) which has a small memory
footprint, allowing many such operators to be active in
parallel. X-Toin is optimized to produce initial results
quickly and can hide intermittent delays in data
arrival by reactively scheduling background processing.
Researchers show that X-Join 1s an effective solution for
providing fast query responses to user even in the
presence of slow and bursty remote sources.

X -Toin (Urhan and Franklin, 1999) has 2 fundamental
principles. It produce first result as soon as possible. It
also produce results when one of two input sources are
blocked, 1.e., not producing inputs. X-Jomn 13 based on
symmetric hash join but with some variations. Tt produces
hash table for both the sources so whenever a tuple
arrives at one of the two sources it is inserted in its hash
table and then its joimn attribute 1s used to probe the hash

Corresponding Author: Raksha Chauhan, Department of Computer Science, Parul Institute of Technology, Vadodara (Gujarat),

India

Asian J. Inform. Technol., 13 (2): 53-57, 2014

table of another source. Variation of this with symmetric
hash jom 1s that it moves part of hash table from memory
to disk when ever required. As with traditional hash based
algorithms, X-Join organizes each input relation in an
equal number of memory and disk partitions or buckets,
based on a hash function applied on the jomn attribute.
Each partition has two portions one reside in memory and
other on disk.

X-Join operates in 3 phase

First phase: This is tuple arriving phase which runs for as
long as either of the data sources sends tuples, the
algorithm joins the tuples from the memory partitions.
Each incoming tuple 1is stored in its corresponding bucket
or partition and 15 joined with the matching tuples from
the opposite relation. When memory gets exhausted, the
partition with the greatest number of tuples is flushed to
disk. The tuples belonging to the bucket or partition with
the same designation in the opposite relation remain on
disk. When both data sources are blocked, the first phase
pauses and the second reactivephase begins.

Second phase: Reactive phase, activated whenever the
first phase terminates. It first chooses a disk resident
partition from one source according to some criterion and
It then uses the tuples from the disk-resident portion of
that partition to probe the memory-resident portion of the
corresponding partition of the other source (Urhan and
Franklin, 1999). Output is produced whenever a match is
found. Final, output 1s produce after checlang duplication
of data (according to some duplication policy), 1.e.,
whether, this data is send before or not. Once, this
partition has processed then there 1s need to check
whether first stage is started back if so then second phase
15 halted and first phase 1s started again otherwise another
portion from disk is selected for continuing with the
second phase.

Third phase: Clean up phase, starts when all tuples from
both data sources have completely arrived. Tt joins the
matching tuples that were missed during the earlier two
phases.

In X-Join the reactive stage can run multiple times for
the same partition. Thus, a duplicate avoidance strategy
is necessary in order to detect already joined tuple pairs
during subsequent executions. For this purpose two time
stamps Arrival Tune Stamp (ATS) and Departure Time
Stamp (DTS) are attached to every tuple. ATS shows the
time when the tuple is first received from its source and
DTS 1s introduced when the tuple 15 sent to disk from
memory to make space for new armvals. Tuple with

54

overlapping ATS and DTS are already produced result
with first phase so these are not to be considered in
second and third phases. Another timestamps are also
used to collect the time the disk residing partition is used
by second phase to produce output.

Progressive Merge Join (PMLJ): Progressive Merge Join
(PMTI) (Dittrich et al., 2002), one of the early adaptive
algorithms also supports range conditions but its
blocking behaviour makes it a poor solution given the
requirements of current data integration scenarios which
is online environment. It partitions the memory into two
partitions. PMJ has 2 operating phase.

Sorting phase: Whenever tuples arrive, they are inserted
in their memory partition and when the memory gets full,
the partitions are sorted on the join attribute and are
joined using any memory joimn algorithm. Thus, output
tuples are obtamed each time when the memory gets
exhausted Next, the partition pair (i.e., the bucket pairs
that were simultaneously flushed each time when the
memory was full) 1s copied on disk. After the data from
both sources completely arrives, the merging phase
begins.

Merging phase: The algorithm defines a parameter F, the
maximal fan-in which represents the maximum number of
disk partitions that can be merged in a single “turn”. F/2
groups of sorted partition pairs are merged in the same
fashion as in sort merge. In order to avoid duplicates in
the merging phase, a tuple joins with the matching tuples
of the opposite relation only if they belong to a different
partition pair.

Hash merge join: HMJ (Mokbel et al., 2004) 15 a hybrid
query processing algorithm combining ideas from X-Toin
and progressive merge join. This introduces the
Hash-Merge Jom algorithm (HMJ) for the jomn operator
occasionally gets blocked. The HMI algorithm has two
phases: the hashing phase and the merging phase. The
hashing phase employs an in-memory hash-based join
algorithm that produces join results as quickly as data
arrives. The merging phase 1s responsible for producing
join results if the two sources are blocked. HMT has two
main goals: it minimize the time to produce first few
results. Produce join results if two sources of operator

already blocked.

Hashing phase: Produce join result quickly using in
memory hash based join and also performs in a same way
as X-Jom perform except that when memory gets full, a

Asian J. Inform. Technol., 13 (2): 53-57, 2014

flushing policy decides which pair of corresponding
buckets from two relation flushed on disk. Once tuple 1 1s
received from source R or from S, if memory is already full
(or exhausted) then HMTJ selects partitioned to flushed to
disk or else if there is enough memory to accommodate
tuple r than compute that value h(r) and jomn all
tuples (S h(r)). (R h(r)). Researchers are taking two
sources R and 8 with N buckets with different sizes. If
source R blocked (one of the source) is blocked than also
hashing phase can produce results. In memory hash table
of R join with 5 which can still be received. HMJ transfer
control to merging phase when all data is processed or
both sources are blocked. Flushing i1s done by selecting
two partittons with same hash value, one from each
source and flushed to disk.

Deals with buckets which are
previously flushed to disk in hashing phase due to
exhausting memory. Merging phase 1s siumilar to
Progressive Merge Join (PMI). Difference is that HMJ
transfer control between hashing and merging phase
many times while in PMJ merging starts after data is

Merging phase:

finished and is processed in memory. Merging phase
applies refinement of traditional Sort-Merge Toin (SMI)
algorithm for each individual bucket. Two refinements are:

¢+ Avoiding the of blocking behavior of
separating the sorting and merging conclude that join
result are produced during the merging

steps

* Duplicates are avoided during the merging phase by
ensuring that the matching tuples belonging to the
samme sorted pair do not join

Double index nested loop join: DINER (Bornea et al.,
2010) 1s adaptive and unblocking join technique which
supports range join condition. Goal of DINER is to
produce join result correctly and avoids operations that
may expose the correctness of the output because of
memory overflow. DINER increases the number of join
tuples as being lighly adaptive to the (often changing)
value distributions of the relations as well as to potential
network delays. DINER has two index characteristics for
1ts frameworlk: small memory footprint. The ability to have
sorted access based on the index keys. DINER has three
working phase: arriving phase, reactive phase and clean
up phase.

Arriving phase: In this phase tuples arrives from one or
both relation and processed in memory. When new tuple
available match with tuples of opposite relation which 1s

55

reside in memory and generate result tuples as soon as
input data are available. When the memory becomes full
then some data from memory must be flushed to disk.
Victim data 1s chosen on the basis of range of the values
of the join attribute. For example, if the values of the join
attribute m the incoming tuples from relation RA tend to
be mcreasing andthese new tuples generate a lot of joins
with relation RB then this is an indication that we should
try to flush the tuples from relation RB that have the
smallest values on the join attribute (of course, if their
values are also smaller than those of the tuples of RA)
and vice versa (Bornea et al, 2010). The key idea of
flushing policy 1s tocreate and adaptively maintain
three non-overlapping valueregions that partition the join
attribute domain, measure the “join benefit” of each
region at every flushing decision pomt and flush tuples
from the region that doesn’t producemany jom results in
a way that permits easy mamtenance of the three-way
partition of the values. When tuples are flushed to disk
they areorganized into sorted blocks using an efficient
index structure, maintained separately for each relation
(thus, the part “Double Index” in DINER)

Reactive phase: This phase invoked whenever both
relations are blocked. In this phase join perform between
those tuples which are earlierly flushed from both
relations to disk partition. Algorithm switches back to the
Amiving phase when enough tuples arrives i memory.

Clean up phase: The clean-up phase starts when both
relations received entirely.

ADAPTIVE GLOBAL FLUSH SCHEME

Tt is a new technicue that aims to flush hash partition
groups which are least contributive to overall result from
in-memory to disk. In online or streaming environment,
data are flushed to disk to make room for new incoming
data, if memory 15 exhausted. Adaptive Global Flush
(AGF) (Viglas et al., 2003) policy flushes partition groups
simultaneously from both hash partition. To flush hash
table data that contribute least to overall result 1s the key
success to any flushing policy. The decision making by
AGF depends on three considerations.

Data arrival pattern: Due to unreliable network
connections, arrival rates and delay of input pattern can
change overall through put. At a time of higher data
arrival in a partition group that group will contribute more
to overall result or at a time of lower data arrival implies
less contribution.

Asian J. Inform. Technol., 13 (2): 53-57, 2014

Data properties: This directly affects the result
production. If data is sorted in a partition group then that
group may contribute a large amount of data n overall
result in a time period T which depends on join attribute.

Global contribution: Refers the number of overall results
which has been produced by each partition group in
multi join query plan. This contribution 1s changing
contimuously due to the selection of join operators.
Selection may change over time due to new data arriving
and flushing.

The main idea of the adaptive global flush algorithm
is to collect and observe statistics during a query runtime
to help the algorithm choose the least useful partition
groups to flush to disk (Levandoski et af., 2011). Which
statistics are bemng collected can be shown from Table 1
in the document.

Here, researchers are taking single parameter N as
input, representing the amount of memory to be flushed.
Main reason behind this 1s to evaluate each partition
group at every operator and score every group based on
global contribution. After that algorithm flushes lowest
score partition to disk until N amount of memory gets free.
AGF algorithm uses four steps as:

Step 1 (Input estimation): [t uses the input statistics in
order to estimate the number of tuples amives at each
operator until then ext memory flushes. Goal 1s to predict
where i.e., at which partition will data arrive and also
provide an idea of how productive each group will be.

Step 2 (Local output estimation): It uses the size statistics
andinput estimation (step 1) in order to estimate the
contribution of each partition to the local output. To
calculate local output, it uses. Combination of three
calculations:

* Expected output from newly arrival at first partition
with already residing mn second partition in same
group

¢+ Expected output from newly arrival at second
partition with already residing in first partition in
same group

* Expected output from newly arrival at first partition
with newly arrival at second partition m same group

Table 1: Statistics taken

Class Statistics Definition
Size prtSizes; Size of hash partition j for input 8
gipSize; Size of partition group j
tupSize, Tuple size for input S
Input inputy, Total input count
unique; No. unique values in part group j
prtlnputy Input count at partition j of input S
Output obsLog Local partition of group j
obsGlo, Gobal partition of group i

56

Step 3 (Partition group scoring): Tt uses observed local
output estimation (step 2) and output statistics to score
each partition group. By using a ratio of obsLog)/obsGloj
researchers can estimate that how many these local
results become global results.

Step 4 (Partition group flushing): It uses score from
partition group scoring (step 3) to flush partition to disk
and it can be done by selecting least scoring partition
group (iteratesuntil N memory get flushed).

CONCLUSION

In this study, researchers reviewed four flushing
techniques to flush the data in memory to disk to make
room for new mcoming tuples. X-Join and progressive
merge join 1s introduced first whose benefits used by
HMT and was implemented. By considering data arrival,
global contribution and data property AGF introduced
with effective results. Main difference between earlier
mention techniques and AGF is that X-Join. PMI, HMT
and DINER focus on query plans containing a single join
operator where as AGF focus on query plans containing
multiple join operators. Main focused of all these
technicques on producing early and first results
throughput in multi join query plan. And these algorithms
also try to improve the flushing policy depending on
various theoretical analysis and collected statics.

REFERENCES

Bornea, M.A., V. Vassalos, Y. Kotidis and
A Deligiannakis, 2010. Adoaptive join operator for
result rate optimization on streaming inputs. IEEE
Trans. Knowledge Data Engin., 22: 1110-1125.

Dittrich, I.P., B. Seeger, D.5. Taylor and P. Widmayer,
2002. Progressive merge join: A generic and
non-blocking sort-based join algorithm. Proceedings
of the 28th International Conference on Very Large
Data Bases, August 20-23, 2002, Hong Kong, China,
pPp: 299-310.

Ives, Z.G., D. Florescu, M. Friedman, A. Levy and
D.S. Weld, 1999. An adaptive query execution
system for data mtegration. Proceedings of the 1999
ACM SIGMOD International Conference on
Management of Data, June, 1999, ACM, New
York, USA., pp: 299-310.

Levandoski, J.J., M.E. Khalefa and M.F. Mokbel, 2011.
On producing high and early result throughput in
multijoin query plans. TEEE Trans. Knowledge Data
Engin., 23: 1888-1902.

Asian J. Inform. Technol., 13 (2): 53-57, 2014

Mokbel, MF. and M. Lu and W.G. Aref, 2004
Hash-merge joi: A non-blocking join algorithm for
producing fast and early join results. Proceedings of
the 20th Intemational Conference on Data
Engineering, March 30-April 2, 2004, Washington,
DC. USA., pp: 251-263.

Urhan, T. and M.J. Franklin, 1999. XJoin: Getting fast
answers from slow and burst networks. Technical
Report CS-TR- 3994, UMIACS-TR-99-13, Computer
Science Department, Umversity of Maryland,
February, 1999.

Urhan, T. and M.J Franklin, 2000. ¥Xjoin: A relatively
scheduled pipilined join operator. IEEE Data Engin.
Bull, 23: 27-33.

57

Viglas, S.D., I.F. Naughton and J. Buger, 2003.
Maximizing the output rate of multi-way join

streaming information
Proceedings of the 25th
Conference on Very Large Data Bases-Volume
20, September 9-12, 2003,
Pp: 285-296.

Wilschut, AN. and PM.G. Apers, 1993. Data flow
query execution in a parallel
environment. Proceedings of the 1st International

queries over SOUICEs.

International

Berlin, Germany,

main-memory

Conference on Parallel and Distributed Information
Systems, December 4-6, 1991, Miami Beach, FL.,
pp: 68-77.

	53-57_Page_1
	53-57_Page_2
	53-57_Page_3
	53-57_Page_4
	53-57_Page_5

