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Abstract: In this study, a new approach has applied to define the clustering using factorizing the original data
set matrix into two lower dimension matrices namely, two dimensional features data set and a transformation
matrix with the help of non negative matrix factorization. This two dimensional feature data set is having the
more separation in available different categories and also provide approximated visual information about
possible clusters available in data set along with correlation available among them. Two dimension feature sets
are a used to obtam the final clusters using optimizing the mimmum quantizing error with help of Genetic
algorithm. Comparisons are made with other well established algorithms like particle swarm optimization.
Benefits of features matrix 1s also shown mn compare to raw data set in terms of obtained cluster performance.
K-means algorithm is also applied independently before and after matrix factorization and comparisons are made
with other obtained results. Cluster performance indexes are defined in terms of F-measure and purity.
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INTRODUCTION

The tremendous growth of scientific databases put a
lot of challenges before the researches to extract useful
mformation from them using traditional data base
techniques. Hence, effective mining methods are essential
to discover the implicit knowledge from huge data
warehouses. Data warehouses provide a great deal of
opportunities for performing data mining tasks such as
classification and clustering. Cluster analysis is one of the
major data mining techniques, widely used for many
practical applications in various emerging areas like
bioinformatics, engineering, biology, medicine and data
mining. Clustering is an unsupervised method that
subdivides an input data set into a desired number of
subgroups so that the objects of the same subgroup will
be similar (or related) to one another and different from (or
unrelated to) the objects in other groups (Dash et al,
2010). A good clustering method will produce high
quality clusters with high intra-cluster similarity and low
inter-cluster similarity (Xu and Wunsch, 2005). The
quality of a clustering result depends on both the
similarity measure used by the method and 1its
umplementation and also by its ability to discover some or
all of the hidden patterns. Cluster analysis is the general
task to be solved which means that it is not one specific
algorithm. Tt is an result of various algorithms itself, in
order to be efficient at clustering. It 13 distinguished by
various type of clustering: hierarchical (nested) versus
partitioned (un-nested). Hierarchical versus partial will be

discussed more among different clusters, whether the set
of clusters is nested or un nested. In more traditional
terminology, it has known as hierarchical or partitional. A
partitional 1s a division of one data set exactly mn one
subset. If the cluster has sub clusters it obtains the
hierarchical clustering which 1s a set of nested clusters
that are organized as a tree. The main node (root) is a
cluster and each node is an sub cluster except leaves
which sometimes are singleton cluster of individual data
objects. In general when we make a comparison between
Hierarchical algorithm and Partitioning Methods, the fact
is that Hierarchical algorithms cannot provide optimal
partitions for their criterion. However, partitional methods
assume given the number of clusters to be found and then
look for the optimal partition based on the objective
function. As researchers mentioned earlier, the most
important difference between hierarchical and partitional
approach 1s that hierarchical methods produce a nested
series of partitions while partitional methods produce only
one. K-means clustering is very simple and fast efficient.
This is most popular one and it is developed by Mac
Queen (Dembele and Kastner, 2003). The easiness of
K-Means Clustering algorithm made this algorithm used
1n several fields. The K-Means algorithm 1s effective in
producing clusters for many practical applications but the
computational complexity of the original K-means
algorithm is very high, especially for large data sets. The
K-means Clustering algorithm 1s a Partitioning Clustering
Method that separates the data into K groups. One
drawback m the K-Means algorithm 1s that of a prion
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fixation of number of clusters (Al-Shboul and Myaeng,
2009, Zhang and Xia, 2009; Yuan et al., 2004; Yedla et al.,
2010). The main objective in cluster analysis 1s to group
objects that are similar in one cluster and separate objects
that are dissimilar by assigning them to different clusters.
One of the most popular clustering methods is K-means
Clustering algorithm (Zhang and Xia, 2009; Fahim et al.,
2006, Bhattacharya and De, 2008; Yedla ef al., 2010). It
classifies object to a pre-defined number of c¢lusters which
is given by the user (assume K clusters). The idea is to
choose random cluster centres, one for each cluster.
These centres are preferred to be as far as possible from
each other. In this algorithm mostly Euclidean distance is
used to find distance between data peints and centroids
(Dembele and Kastner, 2003). The K-means Method
aims to mimmize the sum of squared distances
between all points and the cluster centre. The drawback
in the K-means algorithm is that of a priori fixation of
number of clusters (Al-Shboul and Myaeng, 2009,
Zhang and Xia, 2009, Yuan et al., 2004; Yedla ef al., 2010),
sensitive to initial value for different initial value there
may be different clusters generated and unable to
handle noisy data and outliers. Genetic algorithm
(Goldberg, 1989) 1s a biologically inspwed search
algorithm. The GA uses and manipulates a population of
potential solutions to find the optimal solutions. A
generation 1s completed after each mdividual in the
population has performed the genetic operators. The
individuals in the population will be better adapted to the
objective/fitness function as they have to survive in the
subsequent generations. At each step, the GA selects
mndividuals at random from the current population to be
parents and uses them to produce the children for the next
generation. Over successive generation, the population
evolves toward an optimal solution This advantage of
GA 15 used to find the suitable cluster for new data to be
inserted in database and the fitness function can be
altered to change the behavior of the algorithm.

LITERATURE REVIEW

Numerous researches in literature related to this area
have motivated the research work. A way of clustering
using biological mspired Genetic algorithm was developed
by Kamble (2010) which clusters data in dynamic form.
The database is assumed to be clustered initially and
every new element 1s added as without need of changing
existing clustered database, another ways of improvement
for K-Means Cluster algorithm offers improved simulation
results which offers but also offers clustering result is
more accurate and effective (Zhang and Fang, 2013).
Niknam et al. (2008) presented in their study an efficient
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Hybrid Evolutionary Optimization algorithm based on
combining Ant Colony Optimization (ACO) and Simulated
Annealing (SA) called ACO-SA for cluster analysis. In
this algorithm, the simulated Annealing algorithm as a
local searcher for each colony is considered. To evaluate
the performance of the hybrid algorithm, it is compared
with other stochastic algorithms viz., the original ACO,
SA and K-means algorithms on several well known real
life data sets. In the new proposed Hybrid Evolutionary
algorithm to solve nonlinear partitional clustering problem
(Niknam and Amiri, 2010). It is the combination of FAPSO
(fuzzy Adaptive Particle Swarm Optimization), ACO (Ant
Colony Optimization) and K-Means algorithms called
FAPSO-ACO-K which can find better cluster partition.
The performance of the proposed algorithm 1s evaluated
through several benchmark data sets. A widely acclaimed
research paper developed an algorithm called K-Modes to
extend the K-means paradigm to categorical domains. A
new dissimilarity measures to deal with categorical
objects, replace means of clusters with modes and use a
frequency based method to update modes in the
clustering process to minimize the clustering cost
function. Tested with the well known soybean disease
data set. In the conventional paper related to an algorithm
(Huang, 1997) called K-Modes to extend the K-means
paradigm to categorical domains. Here, it introduces new
dissinilarity measures to deal with categorical objects,
replace means of clusters with modes and use a frequency
based method to update modes in the clustering process
to minimize the clustering cost function. Tested with the
well known soybean disease data set. Dash and Dash
(2012) compared K-Means and Genetic algorithm based
data clustering which have been compared on the basis of
therr working principle, advantage and disadvantage with
suitable examples.

NON-NEGATIVE MATRIX FACTORIZATION

Non-negative Matrix Factorization (NMF) 15 a
popular matrix factorization approach that approximmates a
non-negative matrix X by the product of two non-negative
low-rank factor matrices W and H. The recent years have
witnessed a surge of interests on Non-negative Matrix
Factorization (NMF) from the artificial intelligence field.
Different from traditional spectral decomposition methods
such as Principal Component Analysis (PCA) and
Singular Value Decomposition (SVD), NMF 1s usually
additive which results m a better mterpretation ability,
does not require the factorized latent spaces to be
orthogonal which allows more flexibility to adapt the
representation to the data set. Different to other matrix
factorization approaches, NMF takes mto account the
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fact that most types of real-world data, particularly all
umages or videos are non-negative and maintain such
non-negativity constraints in factorization.

Non-negative Matrix Factorization (NMF) problem
which can be stated in generic form as follows. Given a
non-negative matrix AeR™" and a positive nteger
k<min {m, n}, find nonnegative matrices WeR™* and
HeR™ to minimize the functional:

f(W,H)z%HA ~WH|: (1

The product WH is called a non-negative matrix
factorization of A although, A is not necessarily equal
to the product WH. Clearly the product WH 15 an
approximate factorization of rank at most k but researchers
will omit the word “approximate” in the remainder of this
study. An appropriate decision on the value of k is critical
in practice but the choice of k 1s very often problem
de-pendent. Tn most cases however, k is usually chosen
such that k<.<min (m, n) n which case WH can be thought
of as a compressed form of the data in A.

Multiplicative update algorithms: The Prototypical
Multiplicative algorithm originated with Seung and Lee
(2001). Their multiplicative update algorithm with the mean
squared error objective function is provided.

Multiplicative update algorithm for NMEF:

W =rand (m, k); % initialize W as random dense matrix
H =rand (k, n); %% initialize H as random dense matrix
for i=1:Max_iteration
H = H=x(WTAY (WTWH+C);
H =Hx(AHTY(WHH™+C);
end

Alternating Least Squares algorithms: Another class of
NMF algorithms is the Alternating Least Squares (ALS)
class. In these algorithms, a least squares step is followed
by another least squares step 1 an alternating fashion
thus giving rise to the ALS name. ALS algorithms exploit
the fact that while the optimization problem of Eq. 1 is not
convex in both W and H, it is convex in either W or H.
Thus, given one matrix, the other matrix can be found with
a simple least squares computation. An elementary ALS
algorithm.

ALS algorithm for NMF:
W =rand (m, k); % initialize W as random dense matrix

for i=1:Max iteration
Solve for H in matrix equation WT WH =WTA
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Ret all negative elements in Hto 0
Solve for W in matrix equation HH® WT = HAT
Ret all negative elements in W to 0

end

The ALS algorithms are more flexible allowing the
iterative process to escape from a poor path. Depending
on the implementation, ALS algorithms can be very fast.
The implementation shown above requires sigmficantly
less work than other NMF algorithms and slightly less
work than an SVD implementation.

GENETIC ALGORITHM

Evolutionary  computation,  offers  practical
advantages to the researcher facing difficult optimization
problems. These advantages are multi-fold mcluding the
simplicity of the approach, its robust response to
changing circumstance, its flexibility and many other
facets. The evolutionary approach can be applied to
problems where heuristic solutions are not available or
generally lead to unsatisfactory results. As a result,
evolutionary computations have received increased
interest, particularly with regards to the manner in which
they may be applied for practical problem solving. In
nature, evolution is mostly determined by natural
selection or different ndividuals competing for resources
in the environment. Those individuals that are better are
more likely to survive and propagate their genetic material.
The encoding for genetic information (genome) is done in
a way that admits asexual reproduction which results in
offspring that are genetically identical to the parent.
Sexual reproduction allows some exchange and
re-ordering of chromosomes, producing offspring that
contain a combination of information from each parent.
This is the recombination operation which is often
referred to as crossover because of the way strands of
chromosomes cross over during the exchange. The
diversity in the population 13 achieved by mutation.
Evolutionary algorithms are ubiquitous nowadays having
been success-fully applied to numerous problems from
different domains including optimization, automatic
programming, machine learning, operations research,
bicinformatics and social systems. In many cases the
mathematical function which describes the problem 1s not
known and the values at certain parameters are obtained
from sumulations. In contrast to many other optimization
techniques an important advantage of evolutionary
algonithms 1s they can cope with multi-modal functions. A
typical flowchart of a Genetic Algorithm (GA) is shown in
Fig. 1.
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Fig. 1: A flow chart of a Genetic Algorithm (GA)
PARTICLE SWARM OPTIMIZATION (PSO)

PSO’s precursor was a simulator of social behavior
that was used to visualize the movement of a birds” flock.
Several versions of the simulation model were developed
incorporating concepts such as nearest-neighbor velocity
matching and acceleration by distance. When it was
realized that the simulation could be used as an optimizer,
several parameters were omitted, through a trial and error
process, resulting in the first simple version of PSO. PSO
15 similar to EC techniques m that a population of
potential solutions to the problem under consideration is
used to probe the search space. However, in PSO each
individual of the population has an adaptable velocity
(position change) according to which it moves m the
search space. Moreover, each mdividual has a memory,
remembering the best position of the search space it has
ever visited Thus, its movement is an aggregated
acceleration towards its best previously visited position
and towards the best individual of a topological
neighborhood. Two variants of the PSO algorithm were
developed. One with a global neighborhood and one with
a local neighborhood. According to the global varant,
each particle moves towards its best previous position
and towards the best particle in the whole swarm. On the
other hand, according to the local variant each particle
moves towards its best previous position and towards the
best particle in its restricted neighborhood. In the
following paragraphs, the global variant is exposed (the
local variant can be easily derived through minor
changes).

Suppose that the search space 18 D dimensional then
the ith particle of the swarm can be represented by a
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D-dimensional vector, Xi = [xil, xi2, ..., xiD)]. The velocity
{(position change) of this particle can be represented by
another D-dimensional vector V, = [vil, vi2, ..., viD]. The
best previously visited position of the i-th particle 1s
denoted as Pi = [pil, pi2, ..., piD]. Defining g as the index
of the best particle in the swarm (1.e., the gth particle 1s the
best), n 1s the best seen by that particular particle and let
the superscripts denote the iteration number then the
swarm 1s manipulated according to the following Eq. 2
and 3:

wVnid+C1 rl(Pnid-Xnid) +

Vintid=1y (2)
C2 12( Prgd-Xunid)
X(nt+1)d=Xnmd+Vi{n+1)id (3)
Where:
W = Called inertia weight
Cl, C2 = Two positive constants
rl = Called cognitive parameter
2 = (Called social parameter
e = Constriction factor

In the local variant of PSO, each particle moves
towards the best particle of its neighborhood. Indeed, the
swarm in PSO performs space calculations for several time
steps. It responds to the quality factors implied by each
particle’s best position and the best particle in the swarm,
allocating the responses m a way that ensures diversity.
Moreover, the swarm alters its behavior (state) only when
the best particle in the swarm (or i the neighborhood, in
the local variant of PSO) changes thus it 1s both adaptive
and stable.

K-MEANS ALGORITHM

One of the most important components of a
clustering algorithm 1s the measure of similarity used to
determine how close two patterns are to one another.
K-means clustering group’s data vectors into a predefined
number of clusters, based on euclidean distance as
similarity measure. Data vectors within a cluster have
small euclidean distances from one another and are
associated with one centroid vector which represents the
midpomnt of that cluster. The centroid vector 1s the mean
of the data vectors that belong to the corresponding
cluster. Standard K-means algorithm 1s summarized as:

¢ Randomly initialize the NC cluster vectors

Repeat
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» For each data, assign the vector to the class with

the closed centroid where the distance to centroid
is determined using:

d(Zp,m]) = 2::1(Zpk 7m1k)2 )

Where, k subscripts the dimension
» Recalculate the cluster centroid vectors using
until a stopping criterion is satisfied:

m=—3% 7, )
LUV Papers
Where:
N; = The input dimension
N, = Number of cluster centriods
Z, = The pth data vector
m; = Centroid of cluster |
n, = Number of data vectors in cluster |
C, = The subset of data vectors that form cluster j

In this case, when there is little change in the centroid
vectors over a number of iterations.

FITNESS CRITERIA

In this study, fitness criteria for all cases are taken as
quantization error which is defined as given in Eq. 6:

B

E VZPGCJ- d(zp’ m])

NC

)

1=1 ‘Cu (6)
], =
NE
Where:
d = Distance to centroid
|C;] = The number of data vectors belonging to cluster

C,, Le., frequency of that cluster
EVALUATION METHODS OF CLUSTERING

Quality of clustering in this study are measured
according to the three criteria:

The quantization error
F-measure
Purity

Researchers used the F-measure and purity values to
evaluate the accuracy of the Clustering algorithms.
The F-measure 13 a harmomnic combination of the precision
and recall values used in information retrieval. We can
calculate the precision P(1, 1) and recall R(3, j) of each
cluster j for each class 1
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F-measure of cluster: If n, is the mumber of members of
class 1, 1 is the number of member of cluster j and n; is the
number of class 1 m cluster j then P(1, j) and R(1, j)
can be defined as:

n n,

pi.j)=—: RiLj)=— ™
n, I,
The corresponding F-measure F(1, j) 1s defined as:
Flij) - 2xp(i,j)*<R{1,]) )

P(Lj) R(Lj)

Then F-measure of the whole clustering result is
defined as:

F:Z%max](F(i,j)) (9

where, n 1s the total number of data in the data set. In
general, the larger the F-measure is the better the
clustering results.

Purity of cluster: Purity of a cluster represents the
fraction of cluster corresponding to the largest class of
data assigned to that cluster thus the purity of cluster j 15
defined as:

Pun'ty(j) = anaxi (nij) (10)

1

The purity of the whole clustering result is a
weighted sum of the cluster purities:

Purities = Eﬁpurity(j) (11)
~ n

In general the larger the purity value is better the
clustering result is.

EXPERIMENT DATA SET

There are five data sets have taken among them two
are synthetic data sets where as other three are real data
sets.

Data set 1 (Synthetic data set): The 15 dimensional data
set having three clusters and in each cluster there are 100
data vectors. Each cluster contains value through
following method:
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lthen 1:5€[1020], others €[03] Table 1: NNMF for data set 1
Multiplicative Altemate least square
Class =12 then 6:10€ [10 20], others € [0 3]

Ithen11:15¢ [10 20] others & [0 3] Data sets Iterations  RMS residue Tterations RMS residue

’ 1 57 4.36360 200 4.35506

2 50 4.35478 200 4.36415

. - 3 81 4.36360 200 4.35506

Data set 2 (Iris data set.). ThlS. 1s We.ll understood 1 s 1435478 200 4.35506

database from UCT repository with 4 inputs and 3 5 83 4.36360 200 4.35506

cases. There are 150 data vectors and having interaction 6 103 4.35478 200 4.35506

7 81 4.36360 200 4.35506

among classes. 8 36 4.36360 200 4.36415

9 59 4.35478 200 4.35506

. - 10 69 4.36360 200 4.35506

Data set 3 (Heart disease data set): Tlus 1s a complex data Mean 613 436010 300 435500

set from clustering pomnt of view contains 270 data  $D 19.8049 0.00460 0 0.00380
vectors of 2 classes with 13 mputs. Huge interactions
available among classes. This data set is available in UCI Table 2: NNMF for data set 2

. Multiplicative Altemnate least square
repository.
Data sets  Iterations RMS residue Iterations RMS residue
Data set 4 (Bolt data set): This data set is available 1 200 0161811 140 0.1611
. . . . _ 2 200 0161488 140 0.1611
publically in Stat Lib Datasets Archive. This data from an 3 200 0162018 139 0.1611
experiment on the affects of machine adjustments on the 4 200 0.161716 140 0.1611
- - 5 200 0.161600 136 0.1611
tlme. to couni.: bolts. There are 40 data vectors of 8 1.nputs. s 199 0161002 130 01611
No mformation available about how many categories are 7 200 0.161778 140 0.1611
available there clearly 8 200 0.162341 139 0.1511
' 9 133 0161218 140 0.1611
10 200 0.161526 139 0.1511
EXPERIMENT PROCESS AND Mean 193.2 0.161700 139.1 0.1611
5D 21.1545 0.000400 1.1972 0

PERFORMANCE WITH NNMF

) ) ) ) ) Table 3: NNMF tor data set 3
Factorization are defined with two different Multiplicative Altemate least square

algonthms namely Multiplicative algorithm and Alternate

. . Data sets  Iterations  RMS residue Iterations RMS residue
Least Square a}gorlthm ujldépendently to each data set to | 200 63107 15 62601
get a comparative analysis in terms of root mean square 2 200 6.3217 153 6.2691
residue. 3 200 6.2806 152 6.2691
. . . . L. . 4 200 6.2965 153 6.2691
Maximum number of iteration in Multiplicative and =~ 5 200 6.2905 154 6.2601
ALS algorithms is taken as 200. Performance comparison 6 200 6.3574 155 6.2691
[ : : 7 200 0.3224 151 0.2691
of factorization between both algorlthms in terms _Of g 200 63581 151 6 2601
RMS (Root Mean Square) residue have shown in 9 200 6.3483 153 6.2691
Table 1-4. There are 10 independent experiment trail has 10 200 6.3703 149 6.2651
. . . Mean 200 6.3287 152.4 6.2691
given and mean rms residue error is taken as parameter for SD 0 0.0313 17127 0

quality measure. From the result, it 15 clear that for all data
set, ALS algorithm has delivered lesser rms residue error Table 4: NNMF for data set 4

compare to multiplicative algorithm. Hence, AL S algorithm Multiplicative Altemate least square
has taken for final clustering operation. rms residue errors Data sets Tterations  RMS residue Tterations  RMS residue
with iteration for a single experiment in all case are also 1 200 5.6547 106 5.6418
: : 2 200 5.6461 111 56418
showninFig. 3, Sand?7. _ 3 200 5.6149 05 5.6118
Graphical — representation  show  very  high 4 200 5.6492 108 5.6418
convergence rate for all cases. Representation of feature 5 200 3.6182 106 5.6118
d i f . . . di . . . [ 200 5.6525 111 5.0118
ata set a te.r a(.:torlzatlon m two men.smn mapping 1s = 200 5 6476 03 5 6418
also shown in Fig. 3, 5, 7 and 9, respectively for all four 8 200 5.6496 100 5.6418
: : : : : 9 200 5.6452 116 56418
data sets. It 1s clear with observation w1t7h Vlsugl means to 10 500 pAPA 0 pa
understand the total No. of clusters available in raw data Mean 200 5.6481 103.8 5.6418
set. SD 0 0.0036 83506 0
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CLUSTERING EXPERTMENTS v = 0.75 and inertia weight value decreases from 1.2
towards O with iterations. Performances of all algorithms
Genetic algorithm and PSO are applied before and  have shown correspondingly in Table 5-8:

after factorization for all the data sets. Population size for
both algorithms 1s taken as 20 and 100 for dataset after ~ »  Experiment with data set 1: Table 1-5, Fig. 2-12
factorization and before factorization. Tournament ¢ Experiment with data set 2: Table 6, Fig. 13-15
selection is applied in GA which have the mutation ¢ Experiment with data set 3: Table 7, Fig. 16-18
probability equal to 0.3. Both process are terminated after ~ »  Experiment with data set 4: Table g, Fig. 19-21
1000 iteration. For both algorithms 10 independent trails
have given for estimation of clusters. Parameters value for Performance analysis of clustering: For all data set
PSO m all cases of sunulation defined as: C, = C, = 0.5, experiments are divided mto two categories: without

Table 5: Performance comparison in terms of F-measure and purity of cluster for data set 1

Data sets MEFGA (F/P) MFPSO (E/P) MFK means (F/P) GA (F/P) PSO (E/P) K-means (F/P)
1 1.0/1.0 1.0/1.0 1.0/1.0 0.72/0.67 0.70/0.71 0.67/0.66
2 1.0/1.0 0.98/0.97 1.0/1.0 0.72/0.68 0.72/0.72 1.0/1.0

3 1.0/1.0 1.0/1.0 1.0/1.0 0.69/0.73 0.73/0.71 1.0/1.0

4 0.98/0.99 1.0/1.0 0.67/0.66 0.75/0.72 0.69/0.67 0.61/0.60
5 1.0/1.0 0.99/0.97 1.0/1.0 0.71/0.73 0.67/0.68 1.0/1.0

6 1.0/1.0 1.0/1.0 1.0/1.0 0.71/0.73 0.75/0.77 1.0/1.0

7 1.0/1.0 0.67/0.78 1.0/1.0 0.74/0.71 0.73/0.75 0.59/0.61
8 1.0/1.0 1.0/1.0 0.7/0.72 0.77/0.78 0.77/0.74 1.0/1.0

9 0.99/0.99 1.0/1.0 1.0/1.0 0.71/0.70 0.70/0.70 0.66/0.67
10 1.0/1.0 1.0/1.0 1.O/1.0 0.72/0.74 0.72/0.69 0.67/0.67

Table 6: Performance comparison in terms of F-measure and purity of cluster for data set 2

Data sets MFEGA (F/P) MFPSO F/P MFK means F/P GA F/P PSOF/P K-means F/P
1 1.0/1.0 0.95/0.94 0.96/0.98 0.82/0.87 0.70/0.71 0.87/0.86
2 1.0/1.0 0.97/0.96 0.92/0.91 0.82/0.88 0.72/0.71 0.88/0.89
3 0.97/0.96 1.0/1.0 0.95/0.91 0.89/0.83 0.73/0.72 0.87/0.80
4 0.99/0.98 1.0/1.0 0.89/0.90 0.85/0.82 0.69/0.65 0.81/0.86
5 1.0/1.0 0.92/0.91 0.9/0.90 0.81/0.82 0.67/0.66 0.88/0.81
6 1.0/1.0 1.0/1.0 0.96/0.95 0.83/0.79 0.74/0.72 0.79/0.80
7 0.97/0.98 0.97/0.98 1.0/1.0 0.76/0.79 0.73/0.75 0.79/0.83
8 1.0/1.0 1.0/1.0 0.67/0.72 0.75/0.78 0.78/0.75 0.82/0.82
9 0.98/0.99 1.0/1.0 0.94/0.89 0.77/0.74 0.70/0.72 0.85/0.81
10 1.0/1.0 0.92/0.93 0.89/0.90 0.78/0.75 0.72/0.74 0.87/0.77

Table 7: Performance comparison in terms of F-measure and purity of cluster for data set 3

Data sets MFEGA (F/P) MEFPSO (F/P) MFK means (F/P) GA (F/P) PO (F/P) K-means (F/P)
1 0.63/0.70 0.62/0.67 0.66/0.68 0.64/0.70 0.61/0.70 0.57/0.56
2 0.65/0.66 0.65/0.67 0.65/0.66 0.66/0.66 0.62/0.66 0.58/0.59
3 0.64/0.65 0.61/0.61 0.66/0.65 0.61/0.65 0.64/0.62 0.54/0.50
4 0.66/0.63 0.66/0.63 0.67/0.66 0.63/0.64 0.63/0.63 0.51/0.56
5 0.67/0.68 0.66/0.67 0.64/0.64 0.65/0.66 0.62/0.67 0.58/0.51
6 0.66/0.67 0.63/0.65 0.63/0.66 0.64/0.65 0.63/0.66 0.59/0.50
7 0.62/0.63 0.61/0.61 0.62/0.64 0.63/0.62 0.62/0.64 0.59/0.53
8 0.65/0.64 0.63/0.65 0.66/0.63 0.65/0.61 0.65/0.64 0.52/0.52
9 0.62/0.67 0.62/0.68 0.63/0.67 0.61/0.65 0.64/0.63 0.55/0.51
10 0.63/0.64 0.64/0.62 0.63/0.65 0.63/0.63 0.63/0.61 0.57/0.57

Table 8: Performance comparison in terms of F-measure and purity of cluster for data set 4

Data sets MFEGA (F/P) MFPRO (F/'P) MFK-means (F/P) GA (F'D) PSO (F/P) K-means (F/P)
1 1.0/1.0 1.0/1.0 1.0/1.0 0.76/0.80 0.75/0.78 1.0/1.0
2 1.0/1.0 1.0/1.0 1.0/1.0 0.72/0.79 0.72/0.78 1.0/1.0
3 1.0/1.0 1.0/1.0 1.0/1.0 0.80/0.81 0.79/0.80 1.0/1.0
4 1.0/1.0 1.0/1.0 1.0/1.0 0.75/0.79 0.76/0.80 1.0/1.0
5 1.0/1.0 1.0/1.0 1.0/1.0 0.78/0.80 0.77/0.78 1.0/1.0
6 1.0/1.0 1.0/1.0 1.0/1.0 0.74/0.78 0.75/0.77 1.0/1.0
7 1.0/1.0 1.0/1.0 1.0/1.0 0.78/0.80 0.75/0.78 1.0/1.0
8 1.0/1.0 1.0/1.0 1.0/1.0 0.76/0.78 0.73/0.74 1.0/1.0
9 1.0/1.0 1.0/1.0 1.0/1.0 0.79/0.79 0.77/0.76 1.0/1.0
10 1.01.0 1.01.0 1.011.0 0.77/0.79 0.75/0.78 1.01.0
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factorization and with factorization. In both case three
different algorithms namely Genetic Algorithm (GA),
Particle Swarm Optimization (PSO) and K-means are
applied with defined number of clusters to obtain the
centroid of clusters.

Result without factorization: By observing the F-measure
and purity of clusters in Table 5-8, it is clear that
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Fig. 9: Transformed 2D data of data set 4

performance deliver by GA 1s better compare to PSO and
k-means for all data sets except for data set 4 in all 10
independent trails. Quantization error optimization
performance between GA and PSO for all data set are
given in Fig. 9, 12, 15 and 18. For all case GA based
clustering is not only deliver minimum quantization error
but also faster convergence.

Result with factorization using ALS: Feature matrix
obtained in factorization by ALS algorithm is taken as
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Fig. 12: Cluster and centroid development for factorize data by GA for data set 1

input for same GA, PSO and K-means as it applied in
without factorization mode and experiments are given for
all data set in 10 mdependent trails. For understanding
purpose here we are saying as namely MFGA, MFPSO

and MFKMeans. Obtained results in terms of F-measure
and Purity of clusters are given in Table 5-8. When
researchers compare with without factorization method in
any case, performance mnproved with high quality with
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factorization. Quality to deliver the better clusters by
GA
Quantization error performance between PSO and GA are

18 maintained as in case without factorization.

shown in Fig. 10, 13, 16 and 19. Final clusters and
respective centroid are shown in Fig. 11, 14, 17
and 20.
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Fig. 18: Cluster and centroid development for factorize data by GA for data set 3
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CONCLUSION

Performance of clustering has enhanced with the use
of NNMF by transforming raw matrix data set into two
smaller matrixes, among them one is two dimensional.
This provides number of advantages like reduction in
dimensionality, separation of data comes under the
different category and visual identification of possible

233

clusters. Among two different non-negative matrix
factorization, ALS provides lesser value of rms residue
hence final clustering has given with the outcomes of
ALS. Comparisons are made between various possibilities
with respect to quality of clusters obtain namely by
F-measure and purity of clusters. It is observed with
experiments that Genetic algorithm in association of
ALS  based negative matrix factorization
outperformed the PSO and k-means based clustering with
and without NNMF.
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